Tìm số nguyên tố x,y thuộc N* sao cho x4 + 4y4 là số nguyên tố
1) tìm p nguyên tố sao cho : p + 14 và p + 40 cũng nguyên tố
2) Tìm số nguyên tố x,y thỏa mãn
a)x^2 + 45 = y^2
b) Tìm n thuộc N thỏa mãn :3^n +18 là số nguyên tố
c) Tìm x biết : 3^x + 4^x = 5^x
ai lm nhanh mk t cho
p=2 không thỏa
p=3 thỏa
nếu p>3 thì p chia 3 dư 1 hoặc 2
p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí
p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí
vậy p=3
\(\text{ nếu }x=2\text{ thì: }x^2+45=49=7^2\text{ nên }y=7\left(\text{tm}\right)\)
\(+,x>2\text{ thì x lẻ nên }x^2\text{ chia 4 dư 1}\left(\text{bạn tự cm}\right)\)
\(\Rightarrow x^2+45\text{ chia 4 dư 2 nên }y^2\text{ chia 4 dư 2 }\left(\text{vô lí}\right)\)
Tìm các số x,y thuộc N*.Sao cho x4+4y là số nguyên tố
a) Tìm x,y thuộc Z thỏa : xy=x+y
b) Tìm n sao cho: n^1988+n^1987+1 là số nguyên tố
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Câu 2:
1)Tìm số nguyên tố P sao cho các số P+2 và P+10 là số nguyên tố
2)Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y= -21
3)Cho phân số :A=n-5/n+1 (n thuộc Z;n khác -1)
a)Tìm n để A là số nguyên.
b)Tìm n để A tối giản.
1.Tìm x \(\varepsilon\)N sao cho: 14 : 2x + 3
2.Tìm x,y \(\varepsilon\)N sao cho : ( 2x - 1 ) . ( y+3 ) = 12
3.Tìm số nguyên tố p sao cho : p+4 ; p+8 cũng là số nguyên tố
4.Tìm 2 số nguyên tố có tổng bằng 309
5.Tìm số nguyên tố p sao cho p+6; p+8; p+12; p+14 cũng là số nguyên tố
6.Số : 32 + 34 + 36 + ...+ 32012 là số nguyên tố hay hợp số
Trả lời đầy đủ và ghi rõ ràng nha
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố
TÌM x,y,p thuộc N*(p là số nguyên tố)
Sao cho 1/x+1/y=1/p