x^4 + 4y^4 = x^4 + 4.x^2.y^2 + 4y^4 - 4.x^2.y^2
= (x^2 + 2y^2)^2 - (2xy)^2
= (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy)
Mà x,y thuộc số tự nhiên nên x^2 + 2y^2 - 2xy < x^2 + 2y^2 + 2xy
Mặt khác x^4 + 4y^4 là số nguyên tố nên => x^2 + 2y^2 - 2xy =1
<=> (x-y)^2 + y^2 = 1
=> x-y = 1 và y = 0 => x= 1, y = 0 (loại)
hoặc x-y = 0 và y = 1 => x=y=1
Vậy x=y=1
Cảm ơn các bạn nha