Giair phương trình: \(\frac{x^2-5x+1}{2x+1}+2=\frac{x^2-4x+1}{x+1}\)
Giair phương trình sau \(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)
\(PT:\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)
\(x-1=0\Leftrightarrow x=1\)
\(x-2=0\Leftrightarrow x=2\)
\(3x+2=0\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=2\\x=-\frac{2}{3}\end{cases}}\)
\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x+1\right)+2\left(x+1\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)
\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)
\(\Leftrightarrow2x^3-3x^2+3+x^2-4x+1=0\)
\(\Leftrightarrow3x^2-7x^2+4=0\)
\(\Leftrightarrow\left(3x^2-4x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x^2+2x-6x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(3x+2\right)-2\left(3x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\x=2\\x=1\end{cases}}\)
vậy:...
giải phương trình sau
(2x-1)2+(2-x) (1-2x)=0
[(3-4x)(x+2)] =x2+4x+4
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
Giải phương trình sau: \(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
ĐK \(x\ne\left\{-1;-\frac{1}{2}\right\}\)
Phương trình \(\Leftrightarrow\frac{x^2-4x+1}{x+1}+1=\frac{-x^2+5x-1}{2x+1}-1\)\(\Leftrightarrow\frac{x^2-4x+1+x+1}{x+1}=\frac{-x^2+5x-1-2x-1}{2x+1}\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}=\frac{-\left(x^2-3x+2\right)}{2x+1}\Leftrightarrow\left(x^2-3x+2\right)\left[\frac{1}{x+1}+\frac{1}{2x+1}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+2=0\\\frac{1}{x+1}+\frac{1}{2x+1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x-2\right)=0\\\frac{3x+2}{\left(x+1\right)\left(2x+1\right)}=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;x=2\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;x=2\\x=-\frac{2}{3}\end{cases}}\left(tm\right)}\)
Vậy hệ có 3 nghiệm \(x=1;x=2;x=-\frac{2}{3}\)
\(\Leftrightarrow\frac{x^2-4x+1}{x+1}+1=-\frac{x^2-5x+1}{2x+1}-1.DKXD:x\ne-1;x\ne-\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}=\frac{-x^2+3x-2}{2x+1}\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-x-2x+2\right)\left[\frac{3x+2}{\left(x+1\right)\left(2x+1\right)}\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left[\frac{3x+2}{\left(x+1\right)\left(2x+1\right)}\right]=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\left(n\right)\)
\(hay:x-2=0\Leftrightarrow x=2\left(n\right)\)
\(hay:\frac{3x+2}{\left(x+1\right)\left(2x+1\right)}=0\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\left(n\right)\)
\(V...S=\left\{1:2:-\frac{2}{3}\right\}\)
Giair phương trình: \(2\left(x+\frac{1}{x}\right)^2+\left(x^2+\frac{1}{x^2}\right)^2-\left(x+\frac{1}{x}\right)^2\left(x^2+\frac{1}{x^2}\right)=4-4x+x^2\)
Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)
Khi đó phương trình đã cho
\(\Leftrightarrow2t^2+\left(t^2-2\right)^2-t^2\left(t^2-2\right)=4-4x+x^2\)
\(\Leftrightarrow2t^2+t^4-4t^2+4-t^4+2t^2=x^2-4x+4\)
\(\Leftrightarrow4=x^2-4x+4\)
\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Mà ĐKXĐ của phương trình là \(x\ne0\)
Tập nghiệm của pt là \(S=\left\{4\right\}\)
Đặt \(x+\frac{1}{x}=a\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
Có \(2a^2+\left(a^2-2\right)^2-a^2\left(a^2-2\right)=\left(2-x\right)^2\)
\(2a^2+a^4-4a^2+4-a^4+2a^2=\left(2-x\right)^2\)
\(\Leftrightarrow4=\left(2-x\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Vậy \(S=\left(-2;6\right)\)
Tại sao \(\left(x^2+\frac{1}{x^2}\right)=t^2-2\) thế
Giải các phương trình,bất phương trình:
c,\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
d,\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
e,\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
g,\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
i,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
k,\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
l,\(\left(x^2-2x+1\right)-4=0\)
m,\(4x^2+4x++1=x^2\)
Xin đáy ai giúp mình đi
Giups mk với ạ
Giair phương trình
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
A=1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) + 1/(x-5)(x-6)=1/8 (ĐKXĐ: x#2,x#3,x#4,x#5,x#6)
A= 1/x-2 -1/x-3 + 1/x-3 -1/x-4 .....-1/x-6=1/8
=>1/x-2 -1/x-6=1/8
=>8(x-6)-8(x-2)=(x-2)(x-6)
=> 8x-48-8x+16=x^2-8x+12
=> x^2-8x-20=0
=> (x-10)(x+2)=0 => x=10,x=-2 thuộc ĐKXĐ
Có cần thế ko ạ ??? Shinichi
Điều kiện xác định \(\hept{\begin{cases}x\ne2\\x\ne\\x\ne4\end{cases}3}\)
\(\hept{\begin{cases}x\ne5\\x\ne6\end{cases}}\)
Ta có : \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-3\right)\left(x-4\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(x^2-11+30=\left(x-5\right)\left(x-6\right)\)
Phương trình đã tương đương với
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\)
\(\Leftrightarrow x^2-8x-20=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(x-10=0\Leftrightarrow x=10\)
hoặc
\(x+2=0\Leftrightarrow x=-2\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)thỏa mãn điều kiện phương trình
Phương trình có nghiệm \(x=10;x=-2\)
1) Phương trình 3x-5x+5= -8 có nghiệm là?
2) Giá trị của b để phương trình 3x+b=0 có nghiệm x=-2 là?
3) Phương trình 2x+k=x-1 nhận x=2 là nghiệm khi k=?
4) Phương trình m(x-1)=5-(m-1)x vô nghiệm nếu?
5) Phương trình \(x^2\)-4x+3= 0 có nghiệm là?
6) Phương trình (2x-3)(3x+2)=6x(x-50)+44 có nghiệm là?
7) Tập nghiệm của phương trình \(\frac{5x+4}{10}+\frac{2x+5}{6}+\frac{x-7}{15}-\frac{x+1}{30}\)là?
8) Ngiệm của phương trình\(\frac{5x-3}{6}-x+1=1-\frac{x+1}{3}\)là?
9) Nghiệm của phương trình -8(1,3-2x)=4(5x+1) là?
10) Nghiệm của phương trình \(\frac{8x+5}{4}-\frac{3x+1}{2}=\frac{2x+1}{2}+\frac{x+4}{4}\)là?
11) Nghiệm của phương trình \(\frac{2\left(x+6\right)}{3}+\frac{x+13}{2}-\frac{5\left(x-1\right)}{6}+\frac{x+1}{3}+11\)là?
Help me:(((
Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((
\(1,3x-5x+5=-8\)
\(\Leftrightarrow-2x+5+8=0\)
\(\Leftrightarrow-2x=-13\)
\(\Leftrightarrow x=\frac{13}{2}\)
Giair phương trình:\(\sqrt{x^2-\frac{1}{4x}}+\sqrt{x-\frac{1}{4x}}=x\) với điều kiện \(x\ge\frac{\sqrt[3]{2}}{2}\)
1. Giair phương trình sau :
a.(2x-1) = x - 3x2
b. \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10}=\frac{x+25}{2x^2-50}\)
Lời giải:
a) $2x-1=x-3x^2$
$\Leftrightarrow 3x^2+x-1=0$
$\Leftrightarrow 36x^2+12x-12=0$
$\Leftrightarrow (6x+1)^2=13$
$\Rightarrow 6x+1=\pm \sqrt{13}$
$\Rightarrow x=\frac{1\pm \sqrt{13}}{6}$
b) Bạn xem lại xem có nhầm dấu không?