Cho A= 1/2.3/4.5/6......2015/2016.So sánh a^2 với B=1/2017
cho A= 1/2 . 3/4. 5/6 .....2015/2016. hãy so sánh A2 với B = 1/2017
Homie ơi, giúp mình với:
1) So sánh:
a) -2016/2017 và -2015/2016
b) 2017/-2016 và 2016/-2015
a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)
b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và
\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)
\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và \(\frac{2015}{2016}\)< \(\frac{2017}{2016}\)và \(\frac{2016}{2015}\)
Cho A = 1/2 . 3/4 . 5/6 . ... .2015/2016
So sánh A2 và 1/2017
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2015}{2016}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2013}{2014}\)
\(\Rightarrow A>\frac{1.2.3...2013}{2.3.4...2014}\)
\(\Rightarrow A>\frac{1}{2014}>\frac{1}{2017}\)
Vậy \(A>\frac{1}{2017}\left(đpcm\right)\)
Cho A= 2015/2016+2016/2017;B=2015+2016/2016+2017.Không quy đồng hãy so sánh A và B
Cho A = 2015 phần 2016 + 2016 phần 2017 và B = 2015 + 2016 phần 2016 + 2017 . Hãy so sánh A và B
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
Cho A=1/2.3/4.5/6. ... .9999/10000. So sánh A với 0,001
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
So sánh
a)A=2016^2015 + 1/ 2016^2016 = 1 và B=2016^2016 + 1/ 2016^2017 +1
Vì 20162016 + 1 < 20162017 + 1
\(\Rightarrow B< \frac{2016^{2016}+1+2015}{2016^{2017}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}=\frac{2016^{2015}+1}{2016^{2016}+1}=A\)
Vậy A > B
Theo kết luận kết quả là A > B
A =2016^2016+2/2016^2016-1 và B= 2016^2016/2016^2016-3