Cho tam giác MNP có đường trung tuyến MD = 12 cm. Gọi G là trọng tâm của tam giác. Tính GD
cho tam giác ABC, AB=12 cm, AC=12 cm. AD là trung tuyến tam giác ABC. G là trọng tâm. Tính GD.
cho tam giác DEF cân tại D,đường trung tuyến DM CMtam giác DEM=tam giác DFM b)CM DM vuông góc EF c)biết DE=DF=13 È=10 tính DM d)gọi g trọng tâm của tam giác DEF tính GD
có ΔEDF cân ở D =>DE=DF; góc E =góc F
xét ΔDEM và ΔDFM có
DM là trung tuyến => EM=FM
góc E =góc F (cmt)
DE=DF (cmt)
=>ΔDEM = ΔDFM (cgc)
b)Có Δ DEF cân mà DM là trung tuyến
=> DM là đường cao (tc Δ cân )
=> DM⊥EF
c) EM=FM=EF/2=5
xét ΔDEM có DM ⊥ EF => góc EMD =90o
=>EM2+DM2=ED2 (đl pitago)
=>52+DM2=132 => DM=12
d) Ta có G là trọng tâm của ΔDEF
=>DG=2/3DM=> DG=2/3*12=8
a) Xét ΔDEM và ΔDFM có
DE=DF(ΔDEF cân tại D)
DM chung
EM=FM(M là trung điểm của EF)
Do đó: ΔDEM=ΔDFM(c-c-c)
b) Ta có: DE=DF(ΔDEF cân tại D)
nên D nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ME=MF(M là trung điểm của EF)
nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra DM là đường trung trực của EF
hay DM\(\perp\)EF(Đpcm)
cho tam giác def có da là đường trung tuyến, g là trọng tâm. biết da= 12 cm. tính khoảng cách từ đỉnh d đến trọng tâm g của tam giác def
Cho tam giác ABC có đường trung tuyến AM,gọi G là trọng tâm tam giác,trên tia AM lấy điểm D,sao cho G là trung điểm của AD.Chứng minh:MG=MD và BĐ=CG
suy ra: MG=1/2AM,suy ra: MG=1/2AG
mà AG=GD suy ra: MG=1/2GD -> MG=MD( điều phải cm)
2. xét tam giác BDM và tam giác CGM
góc GMC=góc DMB (đối đỉnh); GM=MD (cm trên); BM=CM (AM là trung tuyến)
-> tam giác BDM = tam giác CGM(c.g.c)
-> BD=CG (dpcm)
cho tam giác MNP, gọi G là giao điểm của 2 đường trung tuyến MD và NE . tính MD biết MG=4cm
Cho tam giác ABC điểm D đối xứng vs A qua B, E đối xứng B qua C, F đối xứng C qua A Gọi G là giao điểm của đường trung tuyến AM Trong tam giác ABC với trung tuyến DN của tam giác DEF Gọi I, K lần lượt là trung điểm của GA và GD
1) CM tứ giác MNIK là hình bình hành
2) Chứng minh tam giác ABC và tam giác DEF có cùng trọng tâm
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
Cho tam giác ABC có AB bằng 4 cm AC bằng 12 cm BC = 6 cm các đường phân giác trong AD be cắt AB tại I
a, Tính BD và CD
b, Gọi AM là đường trung tuyến và G là trọng tâm tam giác ABC . C/m IG//BC và tính độ dài IG
Cho tam giác DEF cân tại D với đường trung tuyến DI
a) CM tam giác DEI = tam giác DFI
b) Cho biết số đo của hai góc DIE và DIF
c) Biết DE=DF=13cm , EF=10cm , hãy tính độ dài đường trung tuyến DI
d) Gọi G là trọng tâm . Tính DG
e) Gọi M là trung điểm của DF . CMR : E,G,M thẳng hàng
Giúp mình câu d , e với ạ
d: Xét ΔDEF có
DI là trung tuyến
G là trọng tâm
=>DG=2/3DI=2/3*12=8cm
e: Xét ΔDEF có
G là trọng tâm
EM là trung tuyến
=>E,G,M thẳng hàng
Cho tam giác ABC có đường trung tuyến AM, gọi G là trọng tâm tam giác, trên tia AM lấy điểm D sao cho G là trung điểm của AD.
a)CM MG=MD và BD=CG.
b)Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt GC, BD tại E, F. CM CE=BF.
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)