BÀI 6: Cho tam giác ABC cân tại A lấy E,F lần lượt thuộc AB,AC sao cho AE=AF.CM: BC + EF=2BF
Có bro nào giải đc ko, giúp với, hứa sẽ tic :)
BÀI 6: Cho tam giác ABC cân tại A lấy E,F lần lượt thuộc AB,AC sao cho AE=AF.CM: BC + EF=2BF
các bro nào giải hộ với :)
Cho tam giác ABC cân tại A lấy E,F lần lượt thuộc AB,AC sao cho AE=AF.CM: BC + EF=2BF
BÀI 1: Cho tam giác ABC có AE là t/tuyến , I là t/điểm của AE. O thuộc AB sao cho OA=2OB , IO cắt BC tại F.CMR: B là t/điểm của EF BÀI 2: Cho tam giác ABC vg tại A. AM là p/g . Vẽ BM vg góc với AB. Lấy I thuộc BM sao cho góc xIA=góc AIB. Tia Ix cắt CM tại K. Tính góc KAI ?
BÀI 3: Cho tam giác ABC cân tại A lấy E,F lần lượt thuộc AB,AC sao cho AE=AF.CM: BC + EF=2BF
Cho tam giác ABC cân tại A . kẻ AI vuông góc với BC tại I (I thuộc BC ) .lấy diểm E thuộc AB và điểm F thuộc AC sao cho AE=AC. CMR:
a. BI=CI
b.tam giác IEF là tam giác cân
c.EF song song với BC
CÁC BẠN GIÚP MÌNH GIẢI ĐÚNG BÀI TOÁN NAY NHÉ VÌ CÓ THỂ SẼ CÓ TRONG BÀI THI SẮP TỚI!!! CẢM ƠN NHIỀU
a) Xét hai tam giác vuông IBA và ICA có:
IA cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác IBA = tam giác ICA ( ch-cgv )
Suy ra IB = IC ( đpcm )
c) AE + EB = AB
À + FC = AC
Mà EB = FC ( gt )
AB = AC ( tam giác ABC cân tại A )
Suy ra AE = À
Suy ra tam giác AEF cân tại A
Suy ra góc AEF = 180 độ - góc BAC / 2
góc ABC = 180 độ - góc BAC / 2 ( tam giác ABC cân tại A )
Suy ra góc AEF = góc ABC và hai góc này ở vị trí đồng vị
Suy ra EF song song BC
câu b để từ từ tui nghĩ
Cho tam giác ABC cân tại A. Kẻ AI vuông góc với BC tại I (I thuộc BC). lấy điểm E thuộc AB và điểm F thuộc AC sao cho AE=AF.Chứng minh rằng:
a. BI=CI
b.TAM GIÁC IEF LÀ TAM GIÁC CÂN
c. EF song song với BC
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
b, xét tam giác AFI và tam giác AEI có : AI chung
FA = AE (gt)
^FAI = ^EAI do tam giác CAI = tam giác BAI (câu a)
=> tam giác AFI = tam giác AEI (c-g-c)
=> FI = EI
=> tam giác EFI cân tại I
Bài 5. Cho tam giác ABC cân tại A có AH đường cao (H BC ) . Lấy điểm E thuộc cạnh AB, F
lượt thuộc cạnh AC sao cho BE = CF.
a) Chứng minh hai điểm E, F đối xứng với nhau qua AH;
b) Gọi O là giao điểm của EF với AH. Các tia BO, CO cắt AC, AB lần lượt ở I và K.
Chứng minh EK = IF.
\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)
Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến
Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)
Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH
\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân
\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)
\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)
cho tam giác ABC cân tại A. Trên các canh AB, AC lần lượt lấy các điểm E và F sao cho AE = AF
a) CMR: EF // BC, BF = CE
b) Gọi M,N lần lượt là trung điểm của EF, BC. CMR: A, M, N thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC) kẻ AK vuông góc với BC tại K. Trên cạnh AC lấy điểm E sao cho AE = AB, từ E kẻ EF vuông với BC tại F .Chứng minh tam giác KAF vuông cân.
tam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KC