Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Linh
Xem chi tiết
Zlatan Ibrahimovic
10 tháng 5 2017 lúc 9:04

Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)

                        \(=\frac{3n}{6n+3}\)

Đến đây so sánh tử số.

Louis Pasteur
10 tháng 5 2017 lúc 9:16

Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)

Xét 2 mẫu của phân số: \(6n+3=6n+3\)

Xét 2 tử số của hai phân số: \(3n+1>3n\)

\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)

sophia
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 6 2017 lúc 19:07

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

            \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

Huỳnh Lưu ly
Xem chi tiết
Lightning Farron
9 tháng 10 2016 lúc 8:56

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\left(1\right)\) 

Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\left(2\right)\)(đúng. vì \(n\ge2\))

Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)

 

Nguyễn Thị Kim Phương
Xem chi tiết
Thanh Tùng DZ
4 tháng 1 2018 lúc 19:54

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

Cô Bé Thần Nông
Xem chi tiết
Nguyễn Nhật Minh
4 tháng 12 2015 lúc 11:41

 

\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)

\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)

Vì n6 + 1 < n6 +n 

=> 1 -A > 1-B

=> A < B

Chíu Nu Xíu Xiu
Xem chi tiết
Nguyễn Ngọc Quý
Xem chi tiết
Nguyễn Tuấn Tài
2 tháng 10 2015 lúc 17:35

Cho n $\in$∈ N và n $\ge$≥ 2. Hãy so sánh.A= $\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{n^2}$122 +132 +142 +............+1n2 với 1 tịk nhé cho tròn 160

Mai Minh Nhật
5 tháng 10 2015 lúc 21:16

với k>=2:

1/k² < 1/k(k-1) = (k-(k-1))/k(k-1) =1/(k-1) +1/k

apf dụng với k=2,3,...,n sẽ tính được A<1

Bùi Thị Thu Hiền
Xem chi tiết
Trà My
11 tháng 5 2016 lúc 16:05

ta có: \(\frac{n}{n+3}=\frac{n\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{n^2+2n}{\left(n+3\right)\left(n+2\right)}\)

\(\frac{n+1}{n+2}=\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+3\right)}=\frac{n^2+3n+n+3}{\left(n+2\right)\left(n+3\right)}\)

thấy rõ \(\frac{n^2+2n}{\left(n+3\right)\left(n+2\right)}<\frac{n^2+3n+n+3}{\left(n+3\right)\left(n+2\right)}\Rightarrow\frac{n}{n+3}<\frac{n+1}{n+2}\)

Ngoài ra bạn có thể sử dụng phương pháp so sánh phần bù

Nguyễn Hoàng Yến Nguyên
Xem chi tiết
Kunzy Nguyễn
21 tháng 7 2015 lúc 18:15

n+1/n+2<1
Suy ra n+1/n+2<n+2/n+1+2=n+2/n+3