CMR: \(13^n.2+7^n.5+26\) ko thể là số chính phương ( Với \(n\inℕ\))
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Chứng tỏ 13^n *2+7^n *5+26 không là số chính phương với n thuộc N
Chứng minh rằng \(13^n.2+7^n.5+26\)không thể là số chính phương với \(n\in N\)
Bài 1 : .CMR tổng của 3 số chính phương liên tiếp không là số chính phương
Bài : 2. CMR :
a)7 . 52n + 12 . 6n \(\forall n\inℕ\)
b) 22n + 5 \(⋮\)7 \(\forall n\inℕ\)
Lưu ý : Bài 2 áp dụng tính chất đồng dư thức
ha tuan anh
Trả lời đc rồi hãng nói đến t i c k
Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à
và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá
Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi
Ko cho ra đc lời giải thì thôi đừng tl làm j cả
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
ra xét các trường hợp của n đi rồi thử
chứng minh 13^n *2 + 7^n *5 +26 không phải là số chính phương
với n nguyên dương
giúp mình với
Chứng minh rằng \(13^n.2+7^n.5+26\) (n∈N) không là số chính phương
CMR :
a) 1 số chính phương ko thể viết đc dưới dạng 4n+2 hoặc 4n+3
b) 1 số chính phương ko thể viết đc dưới dạng 3n+2 với n nguyên
c) tính : an =1+2+3+...+n
d) cm : an +an+1 là số chính phương
CMR : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)không phải là số chính phương với \(n\inℕ^∗\)
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
\(Giai\)
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(\text{Đặt:n2+3n=t}\)
\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)
Đến đây cậu đã làm được chưa ạ?
Mình nghĩ là lm thế này :
A+1=n.(n+1).(n+2).(n+3)+1=n.(n+3).(n+1).(n+2)+1=(n^2+3n).(n^2+3n+2)+1 (1)
Đặt n^2+3n=t (t thuộc N) thì (1) =t.(t+2)+1=t^2+2t+1=(t+1)^2=(n^2+3n+1)^2
Vì n thuộc N nên => n^2+3n+1 thuộc N
Vậy A+1 là số chính phương.
Do đó A không phải số chính phương