Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Bùi Phước Huy
Xem chi tiết
Cao Thị Huyền Trang
Xem chi tiết
•Vεɾ_
Xem chi tiết
ha tuan anh
13 tháng 10 2019 lúc 7:20

có t i c k ko

•Vεɾ_
13 tháng 10 2019 lúc 8:52

ha tuan anh

Trả lời đc rồi hãng nói đến t i c k 

Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à

•Vεɾ_
13 tháng 10 2019 lúc 8:53

và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá 

Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi 

Ko cho ra đc lời giải thì thôi đừng tl làm j cả

nguyễn hương giang
Xem chi tiết
romeo bị đáng cắp trái t...
8 tháng 4 2016 lúc 18:06

ra xét các trường hợp của n đi rồi thử

nguyễn hương giang
Xem chi tiết
Hày Cưi
Xem chi tiết
Trần Ngọc Hân
Xem chi tiết
dryfgjhkjz
Xem chi tiết
X1
24 tháng 1 2019 lúc 20:24

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

shitbo
24 tháng 1 2019 lúc 20:28

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

Đặng Nhật Nam
24 tháng 1 2019 lúc 20:38

Mình nghĩ là lm thế này :

A+1=n.(n+1).(n+2).(n+3)+1=n.(n+3).(n+1).(n+2)+1=(n^2+3n).(n^2+3n+2)+1   (1)

Đặt n^2+3n=t (t thuộc N) thì (1) =t.(t+2)+1=t^2+2t+1=(t+1)^2=(n^2+3n+1)^2

Vì n thuộc N nên => n^2+3n+1 thuộc N

Vậy A+1 là số chính phương.

Do đó A không phải số chính phương