A=2017^2018+1/2017^2018-3
B=2017^2018-1/2017^2018-5
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
Cho A = 2017 mũ 2018 + 1 phần 2017 mũ 2018 - 3 và b bằng 2017 mũ 2018 - 1 phần 2017 mũ 2018 - 5 hãy so sánh a và b
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
So sánh:
A= 2018^2017+1/2018^2017-1
B= 2018^2017-1/2018^2017-3
link nà:https://olm.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+:+A=2017%5E2017/2018%5E2017+1B=2017%5E2016+1/2017%5E2017+1+&id=862033
Cho A= \(\frac{2017^{2018}+1}{2017^{2018}-3}\)
B= \(\frac{2017^{2018}-1}{2017^{2018}-5}\)
Hãy so sánh A với B
Tinh nhanh:
2017 2017 2017 x 2018 2018 2018 2018 /2018 2018 2018 x 2017 2017 2017 2017
Cho
A = \(\frac{2017^{2018}+1}{2017^{2018}-3}\)
B= \(\frac{2017^{2018}-1}{2017^{2018}-5}\)
So sánh A và B
Ta có
A= \(\frac{2017^{2018}-3+4}{2017^{2018}-3}=1+\frac{4}{2017^{2018}-3}\)
B= \(1+\frac{4}{2017^{2018}-5}\)
vậy A > B
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
So sánh: A=2018^2017+1/2018^2017-1
B=2018^2017-1/2018^2017-3
Ta có :
\(A=\frac{2018^{2017}+1}{2018^{2017}-1}\)
\(\Rightarrow A>\frac{2018^{2017}+1-2}{2018^{2017}-1-2}\)
\(\Rightarrow A>\frac{2018^{2017}-1}{2018^{2017}-3}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)