cho A= x^4-6x^3+18x^2-6xy+y^2+2012
tìm x,y để A min và tìm A min
giúp nha
cho biểu thức A\(=X^4-6X^3+18x^2-6xy+y^2+2012\)
tìm x,y để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Tìm x và y sao cho : A=2x2 + 9y2-6xy-6x-12y+2022 là nhỏ nhất va tìm min(A)
A = (x2 - 6xy + 9y2) + 2.(x - 3y).2 + 4 + x2 - 10x + 25 + 1993
A = [(x - 3y)2 + 2.(x - 3y).2 + 22 ] + (x - 5)2 + 1993
A = (x - 3y + 2)2 + (x - 5)2 + 1993 \(\ge\) 0 + 0 + 1993
=> Min A = 1993 khi x - 3y + 2 = 0 và x - 5 = 0
=> x = 5 và y = 7/3
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Giúp mình với mình cần gấp kết quả ạ 1, (x²y + 6x) . (x² - 3xy) a, x⁴y - 3x³y² + 6x³ - 18x²y b, x²y - x³y² + 6x³ - 18x²y C,x⁴y - 3x³y² + 6x³ + 18x²y d, x⁴y + 3x³y² - 6x³ - 18x²y 2, Tìm x biết x . (2x - 4) - 2x² + 9x - 7 = 3 a, x = 1 b, x = 2 C, x = 3 d, x = 4 3, tính giá trị của biểu thức sau tại x = 3 ; y=2 7x . (x² - 2y) + 3xy - 7x³ a, 24 b, -4 c, 6 d, -24 Cảm ơn đã giúp đỡ mình ✨
cho x,y>0 và x+y = 2012
tìm min A =\(\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2
hay A =((x+x+y)/x)^2+((y+x+y)/x)^2
=((2x+y)/x)^2 + ((2x+y)/x)^2
=(2+y/x)^2 + (2+x/y)^2
đặt x/y=k ta có ;
A=(2+k)^2 + (2+1/k)^2
=4+4k+k^2+4+4/k+1/k^2
\(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))
\(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)
\(_{ }\)vậy max A = 18
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
a) tìm giá trị nhỏ nhất của biểu thức: A=\(x^2+xy+y^2-3x-3y+2004\)
b) TÌm giá trị nhỏ nhất của biểu thức: A=\(2x^2+9y^2-6xy-6x-12y+2006\)
c) Tìm min của y=\(\frac{x^4+x^2+5}{x^4+2x^2+1}\)