a, CM : Nếu các chữ số a ,b ,c thỏa mãn điều kiện ab :cd =a : c thì abbb:bbbc= a:c b , Tìm phân số \(\frac{m}{n}\) khác 0 và số tự nhiên k, biết rằng \(\frac{m}{n}\) = \(\frac{m+k}{nk}\)
Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện ab:cd = a:c thì abbb : bbbc = a:c
sửa đề là : ab : bc = a : c .... ( có gạch ngang )
Ta có :
\(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}=\frac{9a+b}{10b}=\frac{999a+111b}{1110b}=\frac{999a+a+111b}{1110b+c}=\frac{1000a+111b}{1110b+c}=\frac{\overline{abbb}}{\overline{bbbc}}\)
ab¯¯¯¯¯bc¯¯¯¯=ac=9a+b10b=999a+111b1110b=999a+a+111b1110b+c=abbb¯¯¯¯¯¯¯¯¯bbbc¯¯¯¯¯¯¯¯¯
cmr: nếu các chữ số a,b,c thỏa mãn:
Điều kiện:ab : bc = a:c thì abbb : bbbc = a : c
C/m : 0,5(20072005-20032003) là số nguyên
2, C/m nếu các số a,b,c thỏa mãn điều kiện ab :bc=a:c thì abbb:bbbc=a:c
1) \(0,5\left(2007^{2005}-2003^{2003}\right)=\frac{1}{2}\left(2007^{2005}-2003^{2003}\right)\)
\(=\frac{2007^{2005}-2003^{2003}}{2}\)
=> Để \(0,5\left(2007^{2005}-2003^{2003}\right)\) là số nguyên thì \(2007^{2005}-2003^{2003}⋮2\)
Có \(2007^{2005}\)và \(2003^{2003}\)là số lẻ
=> \(2007^{2005}-2003^{2003}\)là số chẵn
=> \(2007^{2005}-2003^{2003}⋮2\)
=> \(0,5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên
bữa trước mình chưa làm được câu 2
2) Có: \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\)
=> \(\frac{10a+b}{10b+c}=\frac{a}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{10a+b}{10b+c}=\frac{a}{c}=\frac{10a+b-a}{10b+c-c}=\frac{9a+b}{10b}=\frac{111\left(9a+b\right)}{111.10b}=\frac{999a+111b}{1110b}\)
=> \(\frac{a}{c}=\frac{999a+111b}{1110b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{999a+111b}{1110b}=\frac{a+999a+111b}{c+1110b}=\frac{1000a+100b+10b+b}{1000b+100b+10b+c}\)\(=\frac{\overline{abbb}}{\overline{bbbc}}\)
=> \(\frac{\overline{abbb}}{\overline{bbbc}}=\frac{a}{c}\)
tìm tất cả các số có 4 chữ số \(\overline{abcd}\)thỏa mãn điều kiện: a+b=cd và c+d=ab
Gợi ý: Giả sử \(c\le d\)
Ta có: \(0< a+b\le18\)
\(\Leftrightarrow0< cd\le18\)
\(\Rightarrow c^2\le cd\le18\)
\(\Rightarrow0< c\le4\)
Thế c = 1 vào ta được
\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)
\(\Rightarrow1+a+b=ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)
\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)
Tương tự các trường hợp còn lại
Tìm tất cả các bộ số nguyên dương ( a, b, c, d) thỏa mãn đồng thời các điều kiện sau:
ab=c+d và a+b=cd
chứng minh rằng nếu a b c là các số không âm thỏa mãn cấc điều kiện sau a+3c=8,a+2b=9 thì N=a+b-c-17/2 là các số không dương. tìm a b c để N bằng 0
a+3c +a+2b = 17
=>2a +2b +3c = 17
=>2.(a+b)+3c=17
=>a+b+3c/2=17/2
=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2
=> N là các số không âm
trục căn thức ở mẫu của các biểu thức sau
a) \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{2c}}\) trong đó a,b,c là các số dương thỏa mãn điều kiện c là trung bình nhân của 2 số là a,b
b) \(B=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)trong đó a,b,c,d là các số dương thỏa mãn điều kiện ab=cd và a+b khác c+d
Cho a,b,c là các số dương thỏa mãn điều kiện: a+b+c+ab+bc+ca=6abc.
Tìm GTNN của M=\(\frac{1}{a^{a^2}}+\frac{1}{b^2}+\frac{1}{c^2}\)
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện:
M = a + b = c + d = e + f và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}\frac{13}{17}\) ( Biết a,b,c,d,e,f thuộc tập N* )
Ta có : \(\frac{a}{b}=\frac{14}{22}\Rightarrow\frac{a}{14}=\frac{b}{22}=\frac{a+b}{14+22}=\frac{M}{36}\)
\(\frac{c}{d}=\frac{11}{13}\Rightarrow\frac{c}{11}=\frac{d}{13}=\frac{c+d}{11+13}=\frac{M}{24}\)
\(\frac{e}{f}=\frac{13}{17}\Rightarrow\frac{e}{13}=\frac{f}{17}=\frac{e+f}{13+17}=\frac{M}{30}\)
Nhận thấy M chia hết cho 36,24,30 => \(M⋮36,M⋮24,M⋮30\)
=> \(M\in BC\left(36,24,30\right)\)
Ta có : 36 = 22 . 32
24 = 23 . 3
30 = 2.3.5
=> \(BCNN\left(36,24,30\right)=2^3\cdot3^2\cdot5=360\)
=> \(BC\left(36,24,30\right)=B\left(360\right)=\left\{0;360;720;1080\right\}\)
Vậy số tự nhiên của M là 1080