1/6+1/10+1/15+1/21+1/28+/36+1/45 (Tính tổng)
1/6+1/10+1/15+1/21+1/28+1/36+1/45(tính tổng)
đặt A=1/6+1/10+1/15+1/21+1/28+1/36+1/45
6A=1+3/5+2/5+2/7+3/14+1/6+2/15
6A=1+1+7/14+1/6+2/15
6A=14/5
A=14/5:6=7/15
tính
D = 1/6 + 1/10 + 1/15 + 1/21 + 1/ 28 + 1/36 + 1/45
Đặt A = 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Nhân 2 vế với 1/2 để xuất hiện các mẫu là tích của 2 số tự nhiên liên tiếp sau đó áp dụng công thức 1/n.(n + 1) = 1/n - 1/(n + 1) ta có
1/2.A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
1/2.A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
1/2.A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/8 - 1/9 + 1/9 - 1/10
1/2.A = 1- 1/10
1/2.A = 9/10
=> A = 9/5
Đặt A = 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Nhân 2 vế với 1/2 để xuất hiện các mẫu là tích của 2 số tự nhiên liên tiếp sau đó áp dụng công thức 1/n.(n + 1) = 1/n - 1/(n + 1) ta có :
1/2.A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
1/2.A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
1/2.A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/8 - 1/9 + 1/9 - 1/10
1/2.A = 1- 1/10
1/2.A = 9/10
=> A = 9/5
Đặt A = 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Nhân 2 vế với 1/2 để xuất hiện các mẫu là tích của 2 số tự nhiên liên tiếp sau đó áp dụng công thức 1/n.(n + 1) = 1/n - 1/(n + 1) ta có :
1/2.A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
1/2.A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
1/2.A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/8 - 1/9 + 1/9 - 1/10
1/2.A = 1- 1/10
1/2.A=9/10
=> A = 9/5
Tính hợp lý
1/6+1/10+1/15+1/21+1/28+1/36+1/45
1 / 6 + 1 / 10 + 1 / 15 + 1 / 21 + 1 / 28 + 1 / 36 + 1 / 45
= 2 / 12 + 2 / 10 + 2 / 30 + 2 / 42 + 2 / 56 + 2 / 72 + 2 / 90
= 2 ( 1 / 3 . 4 + 1 / 4 . 5 + 1 / 5 . 6 + 1 / 6 . 7 + 1 / 7 . 8 + 1 / 8 . 9 + 1 / 9 . 10 )
= 2 .( 1 / 3 - 1 / 4 + 1 / 4 - 1/ 5 + 1 / 5 - 1 / 6 + 1 / 6 - 1 / 7 + 1 / 7 - 1 / 8 + 1 / 8 - 1 / 9 +1 / 9 - 1 / 10)
=2 ( 1 / 3 - 1 / 10 )
= 2. 7 / 30
= 7 / 15
TÍNH 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45+1/55+1/66
Bài làm:
Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)
\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)
\(=\frac{1}{2}.\frac{11}{12}\)
\(=\frac{11}{24}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\times\left(1-\frac{1}{12}\right)\)
\(=2\times\frac{11}{12}\)
\(=\frac{11}{6}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\left(1-\frac{1}{12}\right)=2.\frac{11}{12}=\frac{22}{12}=\frac{11}{6}\)
Tính giá trị biểu thức:
D=1/6+1/10+1/15+1/21+1/28+1/36+1/45
A=1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45