tìm x :
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ......+ ( x + 9 ) = 54
1. Tìm giá trị của 1 x 5 x 18 + 2 x 10 x 36 + 3 x 15 x 54 / 1 x 3 x 9 + 2 x 6 x 18 + 3 x 9 x 27
Tìm giá trị của 1 x 5 x 18 + 2 x 10 x 36 + 3 x 15 x 54 / 1 x 3 x 9 + 2 x 6 x 18 + 3 x 9 x 27
\(\frac{1.5.18+2.10.36+3.15.54}{1.3.9+2.6.18+3.9.27}=\frac{1.5.18.\left(1+2.2.2+3.3.3\right)}{1.3.9.\left(1+2.2.2+3.3.3\right)}\)
\(=\frac{1.5.18}{1.3.9}=\frac{10}{3}\)
tìm x : a) (x + 1)^3 + (3 - 2)^3 = 2x^3 + 2(2x - 1)^2 - 9
b) (3x^3+24) : (x+2) + (2x^3−54) : (x^2+3x+9) = 6
a: \(\left(x+1\right)^3+\left(x-2\right)^3=2x^3+2\left(2x-1\right)^2-9\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-6x^2+12x-8=2x^3+2\left(4x^2-4x+1\right)-9\)
\(\Leftrightarrow2x^3-3x^2+15x-7=2x^3+8x^2-8x-7\)
\(\Leftrightarrow-11x^2+23x=0\)
\(\Leftrightarrow x\left(-11x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{11}\end{matrix}\right.\)
Tìm x, biết:
a) (x-3)(x^2+ 3x +9)+x(2+x)(2x-x)=1
b) (x+3)^3 -x(3x+1)^2+(2x+1)(4x-2x+1)=54
tìm x
(2x - 1)(x + 3) - 2x^2 + 5x = 7
(x + 3)( x ^2 - 3x + 9) - x(x -4) (x + 4) = 54
a, \(\left(2x-1\right)\left(x+3\right)-2x^2+5x=7\)
\(\Leftrightarrow2x^2+6x-x-3-2x^2+5x=7\)
\(\Leftrightarrow2x^2+5x-3-2x^2+5x=7\)
\(\Leftrightarrow10x-10=0\Leftrightarrow x=1\)
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-4\right)\left(x+4\right)=54\)
\(\Leftrightarrow\left(x^3+27\right)-x\left(x^2-16\right)=54\)
\(\Leftrightarrow x^3+27-x^3+16x=54\)
\(\Leftrightarrow-27+16x=0\Leftrightarrow x=\frac{27}{16}\)
tìm x (x+3) ( x^2 - 3x +9 ) - ( 54 + x^3 ) = 0
(x+3)(x^2-3x+9)-(54+x^3)=0
=>x^3+27-54-x^3=0
=>-27=0(vô lý)
tìm số nguyên x biết:
a)x/-3=-15/-5
b)x/9=-7/63
c)x+3/15=-1/3
d)42/-54=-7/x
a: =>x/-3=3
hay x=-9
b: =>x/9=-1/9
hay x=-1
c: =>x+1/5=-1/3
hay x=-8/15
d: =>-7/x=-7/9
hay x=9
a, \(\dfrac{x}{-3}=3\Leftrightarrow x=-9\)
b, \(\dfrac{x}{9}=-\dfrac{1}{9}\Rightarrow x=-1\)
c, \(\dfrac{x+3}{15}=-\dfrac{6}{15}\Rightarrow x=-9\)
d, \(\dfrac{42}{-54}=-\dfrac{42}{6x}\Rightarrow6x=54\Leftrightarrow x=9\)
(x+1)+(x+2)+(x+3)+.........+(x+9)=54
(x+1)+(x+2)+(x+3)+.........+(x+10)=2010
a) (x + 1) + (x + 2) + (x + 3) + ... + (x + 9) = 54
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 9) = 54
9x + 45 = 54
9x = 54 - 45
9x = 9
x = 1
b) (x + 1) + (x + 2) + (x + 3) + ... + (x + 10) = 2010
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 10) = 2010
10x + 55 = 2010
10x = 2010 - 55
10x = 1955
x = 391/2.
1)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+9\right)=54\)
\(\Rightarrow x+1+x+2+x+3+.....+x+9=54\)
\(\Rightarrow\left(x+x+x+....+x\right)+\left(1+2+3+....+9\right)=54\)
\(\Rightarrow9x+45=54\)\(\Rightarrow9x=9\Rightarrow x=1\)
2)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+10\right)=2010\)
\(\Rightarrow x+1+x+2+x+3+.....+x+10=2010\)
\(\Rightarrow\left(x+x+x+....+x\right)+\left(1+2+3+....+10\right)=2010\)
\(\Rightarrow10x+55=2010\Rightarrow10x=1995\Rightarrow x=195,5\)
Tìm đa thức đủ trong phép chia (x^54+x^45+x^36+...+x^9+1)/(x^2-1)
Gọi (x^54 + x^45 +......+ x^9 + 1) =f(x)
Đặt f(x) = (x^2 -1 )* Q(x) +R(x)
Do đa thức có bậc không quá 2 nên đa thức dư có bậc không quá 1 nên đặt R(x) = ax +b
Thay vào ta có (x^54 + x^45 +x^36+......+x^9+1) = x^2 -1* Q(x) +ax+b
Lần lượt gán x=1 và x= -1 ta có
F(1) = ( 1^54+1^45+.....,,+1^9+1)= 1^2-1 *Q(x) +a*1+ b
=> 7 = a+b
Tương tự gán x =-1 ta dược 1= b-a
=> b= 7+1/2 =4
a= 7-4=3
Do đó dư là 3x +4