giải phương trình : x^2-2x+2 = 3 căn(x^2-2x)
Giải phương trình sau: 3+căn(2x-3)=x
(Căn x+1)(2 căn x-3)-2x=-4
Căn (2x+1)- x+1= 0
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4
giải phương trình sau: x^4-2x^3+x-căn (2x^2-2x)=0
Đầu tiên ta đặt dk 2x^2 - 2x >=0 <=> x<=0 và x>=1
x^4 -2x^3+x - căn(2x^2-2x)=0
<=> x(x^3-2x^2+1) - căn[2x(x-1)]=0
<=>x[(x^3-x^2)-(x^2-1)] - căn[2x(x-1)]=0
<=>x[x^2(x-1)-(x-1)(x+1)] - căn[2x(x-1)]=0
<=>x(x-1)(x^2-x-1) - căn[2x(x-1)]=0
<=>x(x-1)[x(x-1)-1] - căn[2x(x-1)]=0
<=>[x(x-1)]^2 -x(x-1) - căn[2x(x-1)]=0(*)
Nhân cả hai vế của pt(*) cho 4 ta được:
4[x(x-1)]^2 -4x(x-1) - 4căn[2x(x-1)]=0(**)
Đến đây ta đặt t=căn[2x(x-1)] điều kiện t>=0 ta được pt sau
t^4 -2t^2 -4t =0
<=> t(t^3 - 2t -4)=0
<=> t=0 hoặc t^3-2t -4=0
với t=0 thế vào t= căn[2x(x-1)]=0 => x=0 hoặc x=1
với t^3-2t-4=0 ta thấy pt này có một nghiệm t=2
<=> (t-2)(t^2+2t+2)=0(ở đây ta thực hiện chia t^3-2t-4 cho t-2)
<=>t=2
thế t=2 vào t=căn[2x(x-1)]=2 ta tìm được x=-1 hoặc x=2
thỏa mãn dk x<=0 và x>=1
Vậy pt đã cho có các nghiệm sau x=0; x=1; x=-1; x=2
Kết luận: x=0; x=1; x=-1; x=2
giải phương trình
căn x+3 - 2 căn x = căn 2x+2 - căn 3x+1
Em trục căn thức:
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)
=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!
làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)
\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)
\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)
Giải phương trình sau:
căn(x^2 - 1/4*căn(x^2 + x + 1/4)) = 1/2*(2x^3 + x^2 + 2x + 1)
Giải bất phương trình A) căn 5x-1< x+1 B) căn x^2 +2x+8 b< x+2 C) căn 2x^2 +4
Giải phương trình (x-3)căn(1+x)-x căn(4-x)=2x^2-6x-3
Giải phương trình
a) căn (x + 1) - căn (x - 2) = 1
b) căn (4 - 2 căn 3) - ( x2 - 2x căn 3 + 3) = 0
\(ĐK:x\ge2\)
\(\sqrt{x+1}=\sqrt{x-2}+1\)
\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)
\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)
Giải hệ phương trình
Căn x+2(x-y+3)= căn yX^2+(xx+3)(2x-y+5)=x+16
Giải phương trình sau
Căn của (-x^4 +3x-1) + căn của (2x^2 -3x +2) = x^4 -x^2 -2x+4