Tính
(1+1/2.4).(1+1/3.5)...(1+1/375.377)
Tính
(1+1/2.4).(1+1/3.5).(1+1/4.6)...(1+1/375.377)
Tính A = (1+1/2.4).(1+1/2.4).(1+1/3.5).....(1+1/49.51)
1)Tính tổng 1.3+2.4+3.5+...+97.99+98.1001.3+2.4+3.5+...+97.99+98.100
B=1.3+2.4+3.5+...+97.99+98.100B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.1003+98.992B=98.99.1003+98.992
B=323400+4851=328251B=323400+4851=328251
Số đó=1.3 + 2.4 + 3.5 +....+ 98.100
= 1(2+1) + 2.(3+1) + 3.(4+1) +...+ 98(99+1)
= 1.2 + 1 + 2.3 + 2 + 3.4 + 3+....+ 98.99 +98
= (1.2 + 2.3 + 3.4+....98.99) + (1+2+3+....+98)
=323400 + 4851=328251
tính m=(1+1/1.3)+(1+1/2.4)+(1+3.5).....(1+1/2014.2016)
tính :(1+1/1.3).(1+1/2.4)+(1+1/3.5)+...+(1+1/2014.2016)
luu y : dau /la phan cach giua mau so va tu so
Tính:
(1+1/3)(1+1/2.4)(1+3.5)...(1+1/99.100)
Tính :
(1 + \(\dfrac{1}{1.3}\) ) . ( 1+\(\dfrac{1}{2.4}\) ) . (1+\(\dfrac{1}{3.5}\)) . ... . ( 1+\(\dfrac{1}{2019.2021}\))
Lời giải:
Gọi tích trên là $A$
Xét thừa số tổng quát: $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Thay $n=1,2,3....,2019$ ta có:
$A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2020^2}{2019.2021}$
$=\frac{2^2.3^2...2020^2}{(1.3)(2.4)(3.5)...(2019.2021)}$
$=\frac{(2.3....2020)(2.3...2020)}{(1.2.3...2019)(3.4...2021)}$
$=2020.\frac{2}{2021}=\frac{4040}{2021}$
Tính tổng S=1/1.3 + 1/2.4 + 1/3.5+....+1/4.9+ 1/8.10
Tính tổng S= 1/1.3+1/2.4+1/3.5+...+1/4.9+1/8.10