B= 1.2.3.....2012.(1+1/2+1/3+1/4+...+1/2010)
chứng minh B chia hết cho 2013
Cho B=1.2.3.......2012.(1+1/2+1/3+.....+1/2012).Chứng minh rằng B chia hết cho 2013
B = 1.2.3.....2012(1+1/2+1/3+...+1/2012)
Ta thấy từ 1 đến 2012 sẽ có hai số là 3 và 1342, mà 3x1342=4026 chia hết cho 2013
=> B = 1.2.(3.1342).5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
B = 1.2.4026.5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
=> B chia hết cho 2013
Bài toán này cho thêm tổng một dãy phân số trong ngoặc chỉ để mình hoang mang thôi bạn nhé =))
Chúc bạn học tốt, nhớ tích câu trả lời của mình nhé !
a/Tính tổng
M=1/5^0+1/5^1+1/5^2+...+1/5^2012
b/Chứng minh rằng 2012^2013-1 và 2012^2013+1 không cùng là số nguyên tố
c/Chứng minh rằng 2+2^2+2^3+...+2^2009+2^2010 chia hết cho 42
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
Bài 1 so sánh P và Q
P=2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013
Bài 2 :a [7x-11]=2 mũ 5 nhân 3 mũ 2 +200
b hỗn số 3 1/2 x + hỗn số 16 3/4 = -13,25
bài 3; chứng minh ababab chia hết cho 3
giup mình nha kich cho
nhanh len
Cho B = 1 x 2 x 3 x ... x 2012 x (1+1/2+1/3+...+1/2012
Chứng minh rằng B chia hết cho 2013
cho A=1.2.3.....2012.[1+(1/2)+(1/3)+..+(1/2012).Chứng tỏ A chia hết cho 2013.
Ai cần giải thì để tui giải cho nhé,đang tìm người giỏi thui.Ahihi
Vì trong tích 1.2.3.....2012 có thừa số 671 và thừa số 3 nên tích sẽ chia hết cho 2013.
=> A chia hết cho 2013
chắc chắn đúng 100% h cho mình nếu bạn thấy đúng
cái đó thì quá dễ rồi nhưng nếu ai biến đổi vế bên kia thì tui k cho
cho A= 1.2.3.4..........2012.(1+1/2+1/3+1/4+............+1/2012)
Chứng minh A chia hết cho 2013
1) Cho: S= 7^2013-7^2012+7^2011-7^2010+...-7^2+7-1
a) Chứng minh: S chia hết cho 6
b) Tìm chữ số tận cùng của S
1) Tìm 2 số nguyên tố x, y sao cho: \(x^2-6y^2=1\)
2) Cho \(B=1.2.3...2012.\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
CMR: B chia hết cho 2013
1) \(x^2-6y^2=1\)
=> \(x^2-1=6y^2\)
=> \(y^2=\frac{x^2-1}{6}\)
Nhận thấy y^2 thuộc Ư của \(\dfrac{x^2-1}{6}\)
=> \(y^2\) là số chẵn.
Mà y là số nguyên tố.
=> y = 2.
Thay vào:
=> \(x^2-1=\dfrac{4}{6}=24\)
=> \(x^2=25\)
=> \(x=5\)
Vậy: x = 5; y = 2.