so sanh A= 1/2^2 + 1/ 3^2 +1/4^2+...+ 1/300^2 voi 3/4
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100
A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
A = 1 - 1/100 < 1
nha bn
chúc bn học giỏi
cho A=(1/2^2-1).(1/3^2-1).(1/4^2-1).....(1/100^2-1). So sanh A voi 1/2
A có : 100 - 2 + 1 = 99 thừa số.
Tất cả thừa số của A đều âm.
=> A < 0 < \(\frac{1}{2}\)
cho A = (1/2^2-1)(1/3^2-1)(1/4^2-1)...(1/100^2-1). so sanh voi -1/2
cho a = 1/2*2+1/3*3+1/4*4+....+1/2017*2017
so sanh a voi 1
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}\)
Ta có :
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
........
\(\frac{1}{2017.2017}< \frac{1}{2016.2017}\)
=> \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}< 1\)
=> A < 1
\(a=\frac{1}{2.2}+\frac{1}{3.3}+........+\frac{1}{2017.2017}\)
\(a< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2016.2017}\)
\(a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(a< 1-\frac{1}{2017}\)
Do \(a< 1-\frac{1}{2017}\)
\(\Rightarrow a< 1\)
(1/2^2)+(1/3^2)+(1/4^2)+....(1/2011^2). So sanh tong sau voi 1
đật tông này là A
suy ra A<1/1.2+1/2.3+1/3.4+...+1/2010.2011
Ta có: 1/1.2+1/2.3+1/3.4+...+1/2010.2011=1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011
=1-1/2011=2010/2011
Vì 2010/2011<1suy ra A<1 hay 1/2^2+1/3^2+...+1/2011^2
so sanh A va B voi 0
A = 1. ( - 2 ) . 3 . ( - 4 ) ..... . 99 . ( -100 )
B = 1 . ( - 2 ) . 3 . ( - 4 ) . ... . (-98) . 99
A có 50 thừa số âm
=> A > 0
b) CÓ 49 thừa số âm
=> B < 0
A có 50 thừa số âm
=> A > 0
B có 49 thừa số âm
=> B < 0
tick nha
A=2/3^2+3/3^3+4/3^4+...+50/3^50
so sanh a voi 1
so sanh A va B voi 0
A = 1 . ( - 2 ) . 3 .( - 4 ) . .... . 99 . ( - 100 )
B = 1 . ( - 2 ) . 3. ( - 4 ) . .... . ( - 98 ) . 99