Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Dung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 2 2017 lúc 20:03

Ta có : abba = 1001a + 110b 

Mà 1001 chai hết cho 11 và 110 chai hết cho 11

Nên 1001a chia hết cho 11 và 110b chia hết cho11

Suy ra abba chia hết cho 11

l҉o҉n҉g҉ d҉z҉
22 tháng 2 2017 lúc 20:04

Ta có: S = 1.2 + 2.3 + 3.4 + ....... + 99.100 + 100.101

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 100.101.102

=> 3S = 100.101.102

=> S = 100.101.102 / 3

=> S = 343400

Hoàng Thị Dung
22 tháng 2 2017 lúc 20:07

các bạn cố làm hết giúp mik nha !!!

Nguyễn Hải Vân
Xem chi tiết

Đặt \(A=1\cdot2\cdot4+2\cdot3\cdot5+3\cdot4\cdot6+\cdots+100\cdot101\cdot103\)

\(=1\cdot2\cdot\left(3+1\right)+2\cdot3\cdot\left(4+1\right)+\cdots+100\cdot101\cdot\left(102+1\right)\)

\(=\left(1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\right)+\left(1\cdot2+2\cdot3+\cdots+100\cdot101\right)\)

Đặt \(B=1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\)

\(=\left(2-1\right)\cdot2\cdot\left(2+1\right)+\left(3-1\right)\cdot3\cdot\left(3+1\right)+\cdots+\left(101-1\right)\cdot101\cdot\left(101+1\right)\)

\(=2\left(2^2-1\right)+3\left(3^2-1\right)+\cdots+101\left(101^2-1\right)\)

\(=\left(2^3+3^3+\cdots+101^3\right)-\left(2+3+\cdots+101\right)\)

\(=\left(1^3+2^3+3^3+\cdots+101^3\right)-1-\left(2+3+\cdots+101\right)\)

\(=\left(1^3+2^3+\cdots+101^3\right)-\left(1+2+3+\cdots+101\right)\)

\(=\left(1+2+3+\cdots+101\right)^2-\left(1+2+3+\cdots+101\right)\)

\(=\left\lbrack101\cdot\frac{102}{2}\right\rbrack^2-101\cdot\frac{102}{2}=\left(101\cdot51\right)^2-101\cdot51\)

Đặt \(C=1\cdot2+2\cdot3+\cdots+100\cdot101\)

\(=1\left(1+1\right)+2\left(2+1\right)+\cdots+100\left(100+1\right)\)

\(=\left(1^2+2^2+\cdots+100^2\right)+\left(1+2+\cdots+100\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}+\frac{100\cdot101}{2}=\frac{100\cdot101\cdot201}{6}+50\cdot101\)

\(=50\cdot101\cdot67+50\cdot101=50\cdot101\cdot68\)

Ta có: A\(=\left(1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\right)+\left(1\cdot2+2\cdot3+\cdots+100\cdot101\right)\)

=B+C

\(=\left(101\cdot51\right)^2-101\cdot51+50\cdot101\cdot68\)

\(=101^2\cdot51^2-101\cdot51+50\cdot101\cdot68=101\left(101\cdot51^2-51+50\cdot68\right)=101\cdot266050\)

Đặt \(D=1\cdot2^2+2\cdot3^2+\cdots+100\cdot101^2\)

\(=2^2\left(2-1\right)+3^2\left(3-1\right)+\cdots+101^2\left(101-1\right)\)

\(=\left(2^3+3^3+\cdots+101^3\right)-\left(2^2+3^2+\cdots+101^2\right)\)

\(=\left(1^3+2^3+\cdots+101^3\right)-\left(1^2+2^2+\cdots+101^2\right)\)
\(=\left(1+2+\cdots+101\right)^2-101\cdot\frac{\left(101+1\right)\left(2\cdot101+1\right)}{6}\)

\(=\left(101\cdot\frac{102}{2}\right)^2-101\cdot17\cdot2023=101^2\cdot51^2-101\cdot17\cdot2023\)

\(=101\cdot17\left(101\cdot17\cdot3^2-2023\right)=101\cdot17\cdot13430\)

Ta có: \(\frac{1\cdot2\cdot4+2\cdot3\cdot5+3\cdot4\cdot6+\cdots+100\cdot101\cdot103}{1\cdot2^2+2\cdot3^2+\cdots+100\cdot101^2}\)

\(=\frac{101\cdot266050}{101\cdot17\cdot13430}=\frac{1565}{1343}\)

Vũ Hồng Trang
Xem chi tiết
Feliks Zemdegs
10 tháng 9 2015 lúc 20:58

 

(6x + 35 ) = 330 : 6

6x+35=55

6x=55-35

6x=20

x=20:6

x=10/3

king of king bijuu
Xem chi tiết
Đỗ Hoàng Gia Huy
23 tháng 7 2016 lúc 9:29

có công thức nè bạn 12+22+33+...+n2= n(n+1)(2n+1):6

Nguyễn Thị Anh Thư
Xem chi tiết
Trần Thanh Phương
23 tháng 8 2018 lúc 20:50

\(\frac{B}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\)

\(\frac{B}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{B}{2}=\frac{100}{101}\)

\(B=\frac{200}{101}\)

Sắc màu
23 tháng 8 2018 lúc 20:50

B = \(2\left(\frac{1}{1x2}+\frac{1}{2x3}+....+\frac{1}{100x101}\right)\)

B = \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}...+\frac{1}{101}\right)\)

B = \(2\left(1-\frac{1}{101}\right)\)

B = \(2x\frac{100}{101}\)

B = \(\frac{200}{101}\)

Umi
23 tháng 8 2018 lúc 20:51

\(B=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{100\cdot101}\)

\(B=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{100\cdot101}\right)\)

\(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=2\left(1-\frac{1}{101}\right)\)

\(B=2\cdot\frac{100}{101}\)

\(B=\frac{200}{101}\)

Lưu Dung
Xem chi tiết
Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
The love of Shinichi and...
17 tháng 6 2016 lúc 21:56

A=1x2+2x3+3x4+4x5+......+99x100+100x101

3A=1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98)+100x101x(102-99)

3A=1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100+100x101x102-99x100x101

3A=(1x2x3+2x3x4+3x4x5+4x5x6+...+99x100x101+100x101x102)-(0x1x2+1x2x3+2x3x4+3x4x5+...+98x99x100+99x100x101)

3A=100x101x102

A=100x101x102:3

A=343400

soyeon_Tiểu bàng giải
17 tháng 6 2016 lúc 22:01

A = 1x2 + 2x3 + 3x4 + 4x5 + ... + 99x100 + 100x101

3A = 1x2x(3-0) + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98) + 100x101x(102-99)

3A = 1x2x3 - 0x1x2 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100 + 100x101x102 - 99x100x101

3A = 100x101x102 - 0x1x2

3A = 100x101x102

A = 100x101x34

A = 343400

Bạch Dương
Xem chi tiết
Truong_tien_phuong
26 tháng 3 2017 lúc 11:05

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

Lưu Thành Đạt
Xem chi tiết