tìm x: biết lx-2l+l3-2xl=2x+1
lx-2l +l3-2xl=2x+1 tìm x
Tím x biết lx - 2l + l3 - 2xl = 4x + 1
Ta có: |x - 2| + |3 - 2x | = 4x + 1 (1)
Xét : x - 2 = 0 <=> x = 2
3 - 2x = 0 <=> x = 3/2
Lập bảng xét dấu các giá trị của biểu thức x - 2 và 3 - 2x ta có :
+) Với x<3/2 , từ (1) ta có :
-(x-2) + (3-2x) = 4x+1
<=> -x + 2 + 3 -2x = 4x+1
<=> -x - 2x - 4x = 1-3 -2
<=> -7x = -4
<=> x = 4/7 ( thỏa mãn x <3/2 )
+) Với 3/2 \(\le\) x < 2 , từ (1) ta có :
- ( x-2 ) - (3-2x) = 4x +1
<=> - x + 2 - 3 + 2x = 4x + 1
<=> - x + 2x - 4x = 1 + 3 - 2
<=> - 3x = 2
<=> x = -2/3 ( không thỏa mãn 3/2 \(\le\)x < 2 )
+) Với x \(\ge\) 2, từ (1 ) ta có :
( x - 2 ) - ( 3 - 2x ) = 4x + 1
<=> x - 2 - 3 + 2x = 4x + 1
<=> x + 2x - 4x = 1 + 3 + 2
<=> -x = 6
<=> x= -6 ( không thỏa mãn x \(\ge\)2 )
Vậy x = 4/7
tìm x,biết:lx-2l+l3-2xl=2x+1
Câu hỏi của Asuna yuuki - Toán lớp 7 - Học toán với OnlineMath
nhớ đọc phần bình luận nhé vì bài có chút sai sót
Tìm x biết :
a; lx+2l+lx+4l+...+lx+10l=6x
b; lx+1l+lx+2l+...+lx+10l=13x-26
c; l1-xl+l2-xl+l3-xl=x-5
d;lx+1/2l+lx-1/3l+lx+1/4l=10-5x
bn nào pk lm giúp mk vs ạ
Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.
e hok lớp 6
mà bài này dễ có điều dài
Tìm x biết l4-2xl+lx-2l=2-x
Giúp mình với mk cần gấp
tớ cs 1 cách mừ cực kì đơn giản ==>> phá ngoặc ính BT
\(\left|4-2x\right|+\left|x-2\right|=2-x\)
\(4-2x+x-2=2-x\)
\(2-x-2+x=0\)
\(x=0\left(tm\right)\)
Dùng bảng xét dấu :
Nếu \(x< 2\)
\(\Rightarrow x-2=2-x\Rightarrow2x=4\Rightarrow x=2\left(ktm\right)\)
Nếu \(x\ge2\)
\(\Rightarrow2-x=2-x\Rightarrow0=0\)( luôn đúng )
\(\Rightarrow x\ge2\)
Tìm x,y biết
a. l1-2xl + l2x-1l=3
b. lx-3l+l3y+2l=0
1) 2. I 2x-3 l = 1/2
2) I x+ \(\frac{4}{15}\)l - l-3,75l = -l- 2,15l
3) l 2+3xl- l4x-3 l=0
4) l3x-2l -1=x
5) lx+15l -15 =x
6) l7-2xl+ 7 =2x
7) lx-1l + lx+3l = x-1
Giúp mk với !!
1) 2. I2x-3l = 1/2
|2x-3| =1/2:2
|2x-3| =1/4
=>2x-3 =1/4 hoặc 2x-3 =-1/4
2x =1/4+3 2x =-1/4+3
2x =13/4 2x =11/4
x =13/4:2 x =11/4:2
x =13/8 x =11/8
vậy x=13/8 hoặc 11/8
tich dung cho minh nhe
Tìm x, biết:
a,lx+1/2l=2/5
b,l3/5-xl=4/5
c,l2/3+xl-1/2=-4/5
d,5/2-lx+1/3l=-4/5
e,3/-7-lx-1/5l=-3/7
g,l4/5-xl+1/4=7/6
a,|x+1/2|=2/5
\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x+1}{2}\\\frac{x+1}{2}\end{cases}}\)=+-2/5
x+1/2=2/5\(\Rightarrow\)x+1=4/5\(\Rightarrow\)x=9/5
x+1/2=-2/5\(\Rightarrow\)x+1=-4/5\(\Rightarrow\)x=1/5
Vậy x\(\in\){1/5;9/5}
1 tim x,biết:
a,lx-2l=x-2
b.l2x+3l=5x-1
2 tìm giá trị nhỏ nhất của biểu thức:
A=lx-2l+l3+yl
B=lx-2016l+lx-2017l
gúp mk với
lưu bý nhỏ nhé mk ko biết làm thế nào để có dấu giá trị tuyệt đối nên mk đã lấy chữ l (lờ) thay dấu giá trị tuyệt đối đó thông cảm cho mk nhé.
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
Với x-2=-(x-2) =>x-2=-x+2
=>x=2
Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãnb)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
Với 2x+3=-(5x-1)=>2x+3=-5x+1
=>x=-2/7 (loại)
Với 2x+3=5x-1=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
1 tim x,biết:
a,lx-2l=x-2
<=>\(\left[\begin{array}{nghiempt}x-2=x-2\\x-2=2-x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x\in R\\x=2\end{array}\right.\)
=> \(x\in R\)
b.l2x+3l=5x-1
<=> \(\left[\begin{array}{nghiempt}2x+3=5x-1\\2x+3=1-5x\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{2}{7}\end{array}\right.\)
2 tìm giá trị nhỏ nhất của biểu thức:
A=lx-2l+l3+yl
ta có \(\left|x-2\right|\ge0\)
\(\left|3+y\right|\ge0\)
=> |x-2|+|y+3|\(\ge0\)
dấu = xảy ra khi x=2 và y=-3
=> Min A=0 khi x=2 và y=-3
B=lx-2016l+lx-2017l
ta có:
B=lx-2016l+lx-2017l\(\ge\)|x-2016-x+2017|=1
dấu = xảy ra khi (x-2016)(-x+2017)>=0
<=> \(2016\le x\le2017\)
Min B=1 khi 2016\(\le x\le\)2017