cho A = 1.99 + 2.98 + 3.97 + ... + 99.1 và B = 1.101 + 2.102 + 3.103 + ... + 99.199
Tính A+B
cho A=1.99 + 2.98 + 3.97 + ..... + 99.1
và B= 1.101+2.102+3.103+.....+9.199
tính A+B
Cho A= 1.99+2.98+3.97+...+99.1
và B= 1.101+2.102+3.103+...+99.199
Tính A+B
A + B = ( 1 . 99 + 2 . 98 + 3 . 97 + ... + 99 . 1 ) + ( 1 . 101 + 2 . 102 + 3 . 103 + ... + 99 . 199 )
A + B = 99 . ( 1 + 199 ) + 98 . ( 2 + 198 ) + 97 . ( 3 + 197 ) + ... + 2 . ( 102 + 98 ) + 1 . ( 99 + 101 )
A + B = 99 . 200 + 98 . 200 + 97 . 200 + ... + 2 . 200 + 1 . 200
A + B = ( 99 + 98 + 97 + ... + 2 + 1 ) . 200
A + B = 4950 . 200
A + B = 990000
Tính A+B
A= 1.99+2.98+3.97+.............+99.1
B=1.101+2.102+3.103+............+99.199
so sánh P và Q
P=2016/2017+2017/2018
Q= 2016+2017+2018/2017+2018+2019
A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
So sánh
a) M=1/1^2+1/2^2+1/3^2+...................+1/50^2 và N=2
b) P= 2015^2015+1/2015^2016+1 và Q=2015^2016-2/2015^2017-2
Tính A+B biết
A=1.99+2.98+3.97+..............+99.1
B=1.101+2.102+3.103+.....................+99.199
a) Cho a= 1.9+2.98+3.97+...........99.1
Cho B=1.101+2.102+3.103+.............999.199
Tính A+ B
b) Cho a=1+2017+20172+20173+...........+20172017
Cho b= 20172018-1
So sánh A va B
Chứng minh rằng 12n+1 là phân số tối giản
30n+2
Giúp mình với Thanks!^^
Tính : A = 1.99 + 2.98 + 3.97 + ........+ 97.3 + 98.2 + 99.1
\(A = 1.99 + 2.98 + 3.97 + ...+ 97.3 + 98.2 + 99.1\)
\(A=1.99+2.\left(99-1\right)+3.\left(99-2\right)+...+98.\left(99-97\right)+99.\left(99-98\right)\)
\(A=1.99+2.99-1.2+3.99-2.3+98.99-97.98+99.99-98.99\)
\(=\left(1.99+2.99+3.99+...+98.99+99.99\right)-\left(1.2+2.3+3.4+...+97.98+98.99\right)\)
\(=99.\left(1+2+3+...+98+99\right)-\left(1.2+2.3+3.4+...+97.98+98.99\right)\)
\(=99.4950-\left(1.2+2.3+3.4+97.98+98.99\right)\)
Mà \(1.2+2.3+3.4+...97.98+98.99\)
\(=\frac{1}{3}.\left[1.2+2.3.\left(4-1\right)+3.4.\left(5-2\right)+98.99.\left(100-97\right)\right]\)
\(=\frac{1}{3}.98.99.100=323400\)
\(\Rightarrow A=99.4950-323400=166650\)
\(B=1.99+2.98+3.97+...+97.3+98.2+99.1\)
1.99+2.98+3.97+...+98.2+99.1
1.99+2.98+3.97+...+98.2+99.1