Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Love
Xem chi tiết
Tố Quyên
Xem chi tiết

a:

MC+MB=BC

=>BC=2MB+MB=3MB

=>\(\dfrac{CM}{CB}=\dfrac{2MB}{3MB}=\dfrac{2}{3}\)

Xét ΔCME và ΔCBA có

\(\widehat{CME}=\widehat{CBA}\)(hai góc đồng vị, ME//AB)

\(\widehat{C}\) chung

Do đó: ΔCME đồng dạng với ΔCBA

=>\(\dfrac{CM}{CB}=\dfrac{CE}{CA}=\dfrac{ME}{BA}=\dfrac{2}{3}\)

b: ΔCME đồng dạng với ΔCBA

=>\(\dfrac{C_{CME}}{C_{CBA}}=\dfrac{CM}{CB}=\dfrac{2}{3}\)

=>\(C_{CME}=\dfrac{2}{3}\cdot24=16\left(cm^2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2017 lúc 9:39

Nguyễn Thị Mỹ Hạnh
Xem chi tiết
Lé Lâm
3 tháng 4 2017 lúc 8:45

a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o

=> tam giác ABC đồng dạng tam giác HBA( g.g)
 

b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta

Trương Thị Minh Thư
7 tháng 4 2017 lúc 11:09

Mình bổ sung nha:

b) Xét tam giác AHB và tam giác ABC có:

Góc BAC = Góc BHA = 900

Góc B chung

Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)

Suy ra AH/AC = AB/BC

Hay AH/8 = 6/10

Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)

c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:

AB^2= AH^2+BH^2

Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)

Suy ra BH= 3,6 (cm)

Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3

Vậy C ABC/ C HBA = 5/3  

Chí Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 23:15

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b:AB=căn 3,6*10=6(cm)

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>S HAB/S HCA=(AB/CA)^2

Không Xác Nhận
Xem chi tiết
Nông thị châu nhi
Xem chi tiết
hoy
2 tháng 5 2017 lúc 19:30

a) Theo pitago ta tính đc BC = 10 cm  

b) tam giác AHB đồng dạng tam giác CAB do có AHB =CAB = 90 độ  & BAH = BCA ( cùng phụ ABC )  ,suy ra tam giác AHB đồng dạng CAB (gg)

tam giác AHC đồng dạng tam giác BAC ( Tương tự )

c) tam giác HBA đồng dạng ABC nên S(HBA ): S(ABC )= (AB/BC)2

Tam giác HAC đồng dạng tam giác ABC nên S(HAC)/S(ABC)=(AC/BC)2 

SUY RA TỈ SỐ  S(HAB): S(HAC) = (AB/AC)2 =36/64=9/16

Nông thị châu nhi
2 tháng 5 2017 lúc 20:12

Cảm ơn bạn nha

Hiền Vũ Thu
Xem chi tiết
Hiền Vũ Thu
Xem chi tiết
VuongTung10x
15 tháng 4 2020 lúc 15:01

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

Khách vãng lai đã xóa
dcv_new
15 tháng 4 2020 lúc 15:50

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

Khách vãng lai đã xóa