chứng minh rằng:1/5<1/4^2+1/5^2+1/6^2+...+1/100^2<1/3
Câu 1. Chứng minh rằng số có dạng ̅𝑎𝑎𝑏𝑏𝑐𝑐̅̅̅̅̅̅̅̅̅ ⋮ 11
Câu 2. Chứng minh rằng số có dạng ̅𝑎𝑏𝑎𝑏𝑎𝑏̅̅̅̅̅̅̅̅̅ ⋮ 13
Câu 3. Chứng minh rằng số có dạng ̅𝑎̅8̅̅𝑎̅̅8̅𝑎̅̅8̅ ⋮ 3
Câu 4. Chứng minh rằng tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Câu 5. Tổng của 6 số tự nhiên liên tiếp có chia hết cho 6 không ? Vì sao ?
Câu 6. Chứng minh rằng tổng 3 số chẵn liên tiếp chia hết cho 2 và 3
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
Cho S=1/2+1/3+1/4+...+1/31+1/32 a) chứng minh rằng S>5/2 b) chứng minh rằng S<9/2
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
1.Chứng minh rằng:
A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4
2. Chứng minh rằng:
C= 5+5^2+5^3+...+5^8 chia hết cho 30.
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
Cho A=1+5+5^2+5^3+5^4+5^5+...................+5^99
a,Chứng minh rằng A chia hết cho 6
b,Chứng minh rằng A chia hết cho 156
Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Mẫu giáoLớp 1Lớp 2Lớp 3Lớp 4Lớp 5Lớp 6Lớp 7Lớp 8Lớp 9Lớp 10Lớp 11Lớp 12ĐH - CĐ BL bao long NguyenHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn môn học Mua vipCâu hỏi của tôiTất cảMới nhấtCâu hỏi hayChưa trả lờiCâu hỏi vip CC Công chúa mặt trời 22 tháng 7 2019 - olmCho B = 1/5^2 + 1/6^2 + 1/7^2 +...+ 1/100^2 chứng tỏ 1/6 < B < 1/4
#Hỏi cộng đồng OLM#Toán lớp 6 5 BL NE \(๖ۣۜ N ๖ۣۜ E ๖ۣۜ V ๖ۣۜ E ๖ۣۜ R\) ^^๖ۣۜG๖ۣۜ... 22 tháng 7 2019Ta có :1/5^2+1/6^2+...+1/100^2<1/4.5+1/5.6+...+1/99.100=1/4-1/100<1/4 =>B<1/4
1/5^2 +1/6^2+...+1/100^2<1/5.6+1/6.7+...+1/100.101=1/5-1/101<1/6=>B<1/6
=>1/4<B<1/6
=> ĐPCM
Đúng(0) CC Cá Chép Nhỏ 22 tháng 7 2019Thấy : \(\frac{1}{5^{2}} > \frac{1}{5.6}\)
\(\frac{1}{6^{2}} > \frac{1}{6.7}\)
...
\(\frac{1}{10 0^{2}} > \frac{1}{100.101}\)
Cộng từng vế có :
\(\frac{1}{5^{2}} + \frac{1}{6^{2}} + . . . + \frac{1}{10 0^{2}} > \frac{1}{5.6} + \frac{1}{6.7} + . . . + \frac{1}{100.101}\)
\(B > \frac{1}{5} - \frac{1}{101}\)
Mà : \(\frac{1}{5} - \frac{1}{101} = \frac{101 - 5}{505} = \frac{96}{505}\)=> B > 96/505
Có : \(\frac{1}{6} = \frac{96}{576}\)=> B > 1/6 (1)
Tương tự so2 các SH của B với \(\frac{1}{5.4} + \frac{1}{6.5} + . . . + \frac{1}{100.99}\)
Được : B < \(\frac{96}{400}\)
Có : \(\frac{1}{4} = \frac{1}{400}\)=> B < \(\frac{1}{4}\)(2)
Từ (1),(2) => đpcm
Đúng(2) Xem thêm câu trả lời Các câu hỏi dưới đây có thể giống với câu hỏi trên PH phạm hồng anh 23 tháng 7 2015 - olmcho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL PV Phương Vũ 12 tháng 3 2017Cho A= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 + 1/100. Chứng tỏ 7/12 < A <5/6
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL LP lâm phạm khánh 17 tháng 6 2020 - olmCho S = \(\frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}} + . . . + \frac{1}{10 0^{2}}\). Chứng tỏ rằng 1/6 < S < 1/4
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL TA Trang Anh Nguyễn 25 tháng 4 2016 - olmCho S=1/52 + 1/62 + 1/72+.....+1/1002
Chứng tỏ 1/6 <S <1/4
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL KT Kỳ Tỉ 26 tháng 4 2016 - olmchứng minh
a) 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4
b) 4/3<1/11+1/12+....+1/70<5/2
#Hỏi cộng đồng OLM#Toán lớp 6 2 BL 1 123456 26 tháng 4 2016a) ta có :1/5^2<1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
.................
1/100^2<1/99.100=1/99-1/100
=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)
ta lại có:1/5^2>1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
.................
1/100^2>1/100.101=1/100-1/101
=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)
từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4
Đúng(0) 1 123456 26 tháng 4 2016b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)
ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61) =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)
từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2
Đúng(0) NP Nguyễn Phương Trinh 9 tháng 3 2016 - olm1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL TT trần thùy dương 3 tháng 9 2017 - olmA=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
#Hỏi cộng đồng OLM#Toán lớp 6 1a>
\(\frac{1}{2^{2}} + \frac{1}{10 0^{2}}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Đúng(0) NX Nguyễn Xuân Khởi 14 tháng 5 2017 - olm1.
a, chứng tỏ
1/2^2+1/3^2+...+1/2017^2<1
b,1/4+1/16+1/36+1/64+1/100+1/144+...+1/10000<1/2
c,cho A=1/2^2+1/3^2...+1/9^2
chứng tỏ:2/5<a<8/9
d,chứng tỏ:A=1+1/2^2+...+1/100^2<1/3/4
e,chứng tỏ:1/2^2+1/3^2+...+1/100^2<1
#Hỏi cộng đồng OLM#Toán lớp 6 2 BL S ST 14 tháng 5 2017a, Ta có: \(\frac{1}{2^{2}} < \frac{1}{1.2} ; \frac{1}{3^{2}} < \frac{1}{2.3} ; . . . ; \frac{1}{201 7^{2}} < \frac{1}{2016.2017}\)
\(\Rightarrow \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{201 7^{2}} > \frac{1}{1.2} + \frac{1}{2.3} + . . . + \frac{1}{2016.2017} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{2016} - \frac{1}{2017} = 1 - \frac{1}{2017} < 1\)Vậy...
b, Đặt A = \(\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + . . . + \frac{1}{10000}\)
\(A = \frac{1}{2^{2}} + \frac{1}{4^{2}} + \frac{1}{6^{2}} + . . . + \frac{1}{10 0^{2}}\)
\(A = \frac{1}{2^{2}} \left(\right. 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)
Đặt B = \(\frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}}\)
Ta có: \(\frac{1}{2^{2}} < \frac{1}{1.2} ; \frac{1}{3^{2}} < \frac{1}{2.3} ; . . . . . ; \frac{1}{5 0^{2}} < \frac{1}{49.50}\)
\(\Rightarrow B < \frac{1}{1.2} + \frac{1}{2.3} + . . . + \frac{1}{49.50} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{49} - \frac{1}{50} = 1 - \frac{1}{50} < 1\)
Thay B vào A ta được:
\(A < \frac{1}{4} \left(\right. 1 + 1 \left.\right) = \frac{1}{4} . 2 = \frac{1}{2}\)
Vậy....
Đúng(0) S ST 14 tháng 5 2017c, Ta có: \(\frac{1}{2^{2}} > \frac{1}{2.3} ; \frac{1}{3^{2}} > \frac{1}{3.4} ; . . . . ; \frac{1}{9^{2}} > \frac{1}{9.10}\)
\(\Rightarrow A > \frac{1}{2.3} + \frac{1}{3.4} + . . . + \frac{1}{9.10} = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + . . . + \frac{1}{9} - \frac{1}{10} = \frac{1}{2} - \frac{1}{10} = \frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^{2}} < \frac{1}{1.2} ; \frac{1}{3^{2}} < \frac{1}{2.3} ; . . . . ; \frac{1}{9^{2}} < \frac{1}{8.9}\)
\(\Rightarrow A < \frac{1}{1.2} + \frac{1}{2.3} + . . . + \frac{1}{8.9} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{8} - \frac{1}{9} = 1 - \frac{1}{9} = \frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5} < A < \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a
Đúng(0) Xem thêm câu trả lời DG Diamond Gaming 8 tháng 5 2016 - olmChứng tỏ rằng :B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
#Hỏi cộng đồng OLM#Toán lớp 6 0 BL Xếp hạng TuầnThángNăm SV Sinh Viên NEU 4 GP NL Nguyễn Lê Phước Thịnh 2 GP LD Lê Đoàn Minh Ngọc VIP 2 GP AA admin (a@olm.vn) 0 GP VT Vũ Thành Nam 0 GP CM Cao Minh Tâm 0 GP NV Nguyễn Vũ Thu Hương 0 GP VD vu duc anh 0 GP OT ♑ ঔღ❣ ๖ۣۜThư ღ❣ঔ ♑ 0 GP LT lương thị hằng 0 GP