Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Đinh Khắc Duy
11 tháng 3 2017 lúc 16:57

Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

           \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

             \(.\)                   \(.\)

             \(.\)

             \(.\)                    \(.\)  

             \(.\)                    \(.\)

         \(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)

Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)

Nhớ k cho mình nhé!

Chúc các bạn học tốt!

Le Phuc Thuan
10 tháng 3 2017 lúc 20:52

mình giải ở đè trước rồi

Đặng Thanh Phương
Xem chi tiết
Trương Hoàng My
Xem chi tiết
Đinh Đức Hùng
19 tháng 4 2017 lúc 10:56

Ta có :

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

Hoàng Ngọc
Xem chi tiết
Nguyễn Trần LiLi
Xem chi tiết
nguyễn trần hạ băng
Xem chi tiết
ST
22 tháng 2 2017 lúc 20:13

a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)

b, B = 2 + 22 + 23 +...+ 230

= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)

= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)

= 2.63+...+225.63

= 63(2+...+225)

Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21 

Vậy B chia hết cho 21

nguyễn trần hạ băng
22 tháng 2 2017 lúc 20:42

Cảm ơn bn nhìu nha !!! 

các bạn I love you
Xem chi tiết
Giang Hồ Đại Ca
29 tháng 8 2016 lúc 7:46

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

Phùng Minh Quân
1 tháng 3 2018 lúc 20:19

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

=\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

Có \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=\(\frac{1}{1}-\frac{1}{100}\)

=\(\frac{99}{100}\)

Vì \(\frac{99}{100}< 1\) 

mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<1

Vậy.....

Khách vãng lai đã xóa
Nguyễn Đức Mạnh
Xem chi tiết
dinh lenh duc dung
7 tháng 6 2019 lúc 21:20

Ta có: \(\frac{1}{5}\)>\(\frac{1}{14}\)

\(\frac{1}{14}\)=\(\frac{1}{14}\)

\(\frac{1}{28}\)<\(\frac{1}{14}\)

...

\(\frac{1}{97}< \frac{1}{14}\)

=>Cả dãy số < \(\frac{1}{14}.7\)<\(\frac{1}{2}\)

Lại Thanh Tùng
Xem chi tiết
Đoàn Đức Hà
29 tháng 7 2021 lúc 20:03

\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)

\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)

\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)

Khách vãng lai đã xóa