Giải phương trình: 2x(8x−1)2(4x−1)=9
giải phương trình : 2x(8x-1)^2(4x-1)=9
Giải phương trình:
2x(8x - 1)2(4x - 1) = 9
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72\)(nhân hai vế với 8)
Đặt \(8x-1=y\). Khi đó, pt được viết lại:
\(\left(y+1\right)y^2\left(y-1\right)=72\)
\(\Leftrightarrow y^2\left(y^2-1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow y^4+3y^3-3y^3-9y^2+8y^2+24y-24y-72=0\)
\(\Leftrightarrow y^3\left(y+3\right)-3y^2\left(y+3\right)+8y\left(y+3\right)-24\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^3-3y^2+8y-24\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y^2\left(y-3\right)+8\left(y-3\right)\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-3\right)\left(y^2+8\right)=0\)
Mà \(y^2+8\ge8>0\)
\(\Rightarrow\orbr{\begin{cases}y+3=0\\y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\y=3\end{cases}}}\)
TH1: \(y=-3\)
\(\Rightarrow8x-1=-3\)
\(\Leftrightarrow8x=-2\)
\(\Leftrightarrow x=\frac{-1}{4}\)
TH2: \(y=3\)
\(\Rightarrow8x-1=3\)
\(\Leftrightarrow8x=4\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của pt là S={\(\frac{-1}{4};\frac{1}{2}\)}
1.Giải các phương trình sau:
A. 1+14/(x-4)^2=-9/x-4
B.1+8x/1+2x-2x/2x-1+12x^2-9/1-4x^2=0
C.1/2x-6-3x-5/x^2-4x+3=1/2
1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)
\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)
\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)
=>-8x+8=0
hay x=1(nhận)
c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
giải phương trình sau: 2x *(8x-1)^2 * (4x-1)=9 Cần gấp! cảm ơn mn
Giải phương trình
2x(8x-1)2 (4x-1)=9
\(PT< =>8x\left(8x-1\right)^2\left(8x-2\right)=72\)
\(< =>8x\left(8x-2\right)\left(64x^2-16x+1\right)=72\)
\(< =>\left(64x^2-16x\right)\left(64x^2-16x+1\right)=72\)
Đặt \(64x^2-16x+\frac{1}{2}=t\)
\(PT< =>\left(t-\frac{1}{2}\right)\left(t+\frac{1}{2}\right)=72\)
\(< =>t^2=\frac{289}{4}\)
\(< =>\orbr{\begin{cases}t=\frac{17}{2}\\t=\frac{-17}{2}\end{cases}}\)
\(TH1:t=\frac{17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{17}{2}\)
\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{4}\end{cases}}\)
\(TH2:t=\frac{-17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{-17}{2}\)
\(< =>64x^2-16x+9=0\)
\(< =>\left(8x-1\right)^2+8=0\left(VL\right)\)
Vậy S={1/2;-1/4}
Giải phương trình: (8x+5)2 (4x +3) (2x+1) = 9
x = -0.25 và hình như còn 1 giá trị nữa hay sao ý ạ
giải phương trình: x-1/2x^2-4x - 7/8x = 5-x/4x^2-8x - 1/8x-16
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
giải phương trình : 2x(8x-1)^2(4x-1)=9
giúp mình với cảm ơn nhiều nhé
2x(8x-1)2(4x-1)= 9
<=> 2x(64x2-16x+1)(4x-1)=9
<=>(128x3 - 32x2 + 2x)(4x-1)=9
<=>512x4 - 256x3 + 40x2 - 2x=9
<=>64x4 - 32x3 + 5x2 - 0,25x - 1,125=0
<=>64x3(x-0,5) + 5x(x-0,5) + 2,5x -0,25x - 1,125 = 0
<=> (x-0,5)(64x3 + 5x - 2,25) = 0
<=> (x-0,5)(64x3 + 16x2 - 16x2 - 4x + 9x - 2,25)=0
<=>(x-0,5)[64x2 (x + 0,25 ) -16x(x + 0,25) + 9(x + 0,25) = 0
<=> (x-0,5)(x+0,25)(64x2 -16x +9) = 0 (vì 64x2 -16x +9 > 0)
<=>\(\orbr{\begin{cases}x-0,5=0\\x+0,25=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0,5\\x=-0,25\end{cases}}\)
Vậy phương trình có hai nghiệm là S={\(\frac{1}{2}\) ; \(\frac{-1}{4}\)}
- Giải phương trình: \(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72.\)(nhân cả 2 vế vs 8)
Đặt \(a=8x-1.\)ta có pt
\(\left(a-1\right)a^2\left(a+1\right)=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0.\)
\(\Rightarrow\left(a-3\right)\left(a+3\right)=0\)(do \(a^2+8\ne0.\))
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}8x-1=3\\8x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0.5\\x=-0.25\end{cases}}\)
vậy, \(S=\left\{0.5;-0.25\right\}.\)
xong rồi đó bn