Tìm cặp số nguyên x , y thỏa mãn : \(\frac{x}{5}+1=\frac{1}{y-1}\)
Số cặp (x;y) nguyên thỏa mãn: \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Rightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Rightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Rightarrow\left(x-3\right)y=6\)
Ta có bảng sau:
...
Bạn lấy bài này làm mẫu của anh mình nhé !!!
1)Có những cặp số nguyên nào thỏa mãn x*y=x+y?
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
Tìm tất cả các cặp số nguyên(x;y)thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)(trong đó p là số nguyên tố cho trước)
Số các cặp số nguyên (x;y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)
Do x, y là số nguyên => 40 chia hết cho 1 - 2y
=> 1 - 2y thuộc Ư(40)
Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}
=> y thuộc {1; 0; 3; -2}
=> x thuộc {-40; 40; -8; 8}
tìm cặp số nguyên (x,y) thỏa mãn \(x+\frac{1}{7}=\frac{1}{y}\)
Tìm cặp số nguyên (x,y) thỏa mãn: \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\)
1) Có những cặp số nguyên nào thỏa mãn x.y=x+y
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn hệ thức \(y=\frac{1}{x+1}+\frac{8}{x-4}\)
Tìm các cặp số nguyên ( x,y )thỏa mãn \(\frac{1}{x}\)+\(\frac{1}{y}\)=2
k cho tớ đi tớ giải cho kết quả là
1/x =2 - 1/y=(2y-1)/y
=> x= y/(2y-1)
=> 2x=(2y-1+1)/(2y-1)=1 + 1/(2y-1)
Để x nguyên thì 1 chia hết cho 2y-1
2y-1=±1
+/ 2y-1=-1 => y=0 => x=0
+/ 2y-1=1 => y=1; x=2
Có 2 cặp x, y thỏa mãn: (0; 0); (2; 1)