Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thị Minh Huyền
Xem chi tiết
Nguyễn Ngọc Ánh
3 tháng 5 2018 lúc 12:06
a, Vì điểm D nằm trên tia đối của tia BC nên điểm B nằm giữa D và C. Ta có: BD+BC=CD CD=6+3=9(cm) b,Vì M là trung điểm của DC nên ta có: DM=DC=DC/2=9/2cm Trên tia DB có DB=3cm, DM=9/2 nên DB
Nguyễn Ngọc Ánh
3 tháng 5 2018 lúc 12:21

Tiếp nhé

nên DB<DM (do 3cm,\(\frac{9}{2}\)cm). Suy ra điểm B nằm giữa 2 điểm D và M. Ta có:

                     DB+MB=DM

                   MB=\(\frac{9}{2}\)-3=4,5-3=1.5 (cm)

c, Theo ý a ta có điểm B nằm giữa D và C. Suy ra tia AB nằm giữa 2 tia AD và AC (1)

Ta có: \(\widehat{DAB}\) + \(\widehat{BAC}\) = \(\widehat{DAC}\) (*)

Vì tia Ay là tpg của DAB suy ra:

+Tia Ay nằm giữa 2 tia AD và AB (2)

+\(\widehat{DAy}\) = \(\widehat{yAB}\)\(\frac{1}{2}\)\(\widehat{DAB}\)= \(\widehat{\frac{DAB}{2}}\) (**)

Vì tia Ax là tpg của BAC suy ra:

+Tia Ax nằm giữa 2 tia BA và BC (3)

+\(\widehat{BAx}\) = \(\widehat{xAC}\) = \(\frac{\widehat{BAC}}{2}\) (***)

Từ (1) (2) và (3) suy ra tia AB nằm giữa 2 tia Ax và Ay. Ta  có:

                             \(\widehat{yAx}\) = \(\widehat{yAB}\) + \(\widehat{BAx}\)\(\frac{\widehat{DAB}}{2}\)\(\frac{\widehat{BAC}}{2}\)

                                                         = \(\frac{D\widehat{AB}+\widehat{BAC}}{2}\) = \(\frac{\widehat{DAC}}{2}\)= 120: 2 = 60o

huong
22 tháng 3 2019 lúc 13:10

còn câu đ thì sao ngọc ánh

Tô Liên Bạch
Xem chi tiết
Lê Hương Quỳnh Châu
18 tháng 4 2020 lúc 21:15

c)  <xAy = 85o

đ) thì có vô số góc đỉnh A đc tạo thành

theo mik là như dị, nếu sai thì thông cảm nha!!!  =.=''

Khách vãng lai đã xóa
nguyễn hà
Xem chi tiết
Vũ Diệu Hương
Xem chi tiết
Thùy Linh Nguyễn
Xem chi tiết
Linh Chi Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 1:06

loading...

Văn Thắng Hoàng
Xem chi tiết
Cấn Nhung
30 tháng 5 2021 lúc 12:42

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng

 

Đặng Khánh Ngọc
Xem chi tiết
Đặng Khánh Ngọc
Xem chi tiết