Chứng minh rằng:
\(A=\frac{1}{3^2}+\frac{1}{3^4}+......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}<0,1\)
Chứng minh rằng: \(A=\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{4n-2}}-\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}
Chứng minh rằng:
A=\(\frac{1}{3^2}+\frac{1}{3^4}+.......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)< 0,1
Chứng minh rằng
A= \(\frac{1}{3^{^2}}\)- \(\frac{1}{3^4}\)+.......+ \(\frac{1}{3^{4n-2}}\)- \(\frac{1}{3^{4n}}\)+.......+ \(\frac{1}{3^{98}}\)- \(\frac{1}{3^{100}}\)< 0,1
\(A=\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{4n-2}}-\frac{1}{3^{4n}}+....+\frac{1}{3^{98}}+\frac{1}{3^{100}}\)
Suy ra \(3^2.A=1-\frac{1}{3^2}+.....+\frac{1}{3^{4n-4}}-\frac{1}{3^{4n-2}}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)
Khi đó \(3^2.A-A=1-\frac{1}{3^{100}}\)hay \(8A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1}{8}-\frac{1}{3^{100}}< 0,1\)
Vậy
Chứng minh rằng:
a,\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5n}{3.\left(4n+3\right)}\)
b,\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}< \frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)
Chứng minh rằng \(\frac{1}{8^2}-\frac{1}{8^4}+...+\frac{1}{8^{4n-2}}-\frac{1}{8^{4n}}+...+\frac{1}{8^{98}}-\frac{1}{8^{100}}\)
Bài 3:
So sánh A=\(\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^6}+\frac{1}{3^8}+...+\frac{1}{3^{2n+3}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)với \(\frac{1}{10}\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh:
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{4n-2}+\frac{1}{4n}+...+\frac{1}{98}+\frac{1}{100}<\frac{1}{50}\)
đề có thiếu hay thừa gì ko nhỉ? tại cái này hình như vế trái gồm 2 dãy quy luật.dãy có các số hạng là bội của 1/7 ko thấy số cuối =="
Biểu thức ko có quy luật
=> sai đề
=> bỏ :V