1. Các tia phân giác của góc B và góc C trong tam giác ABC cắt nhau tại H kẻ HK vuông góc với AB, HI vuông góc với AC
a) CM: tam giác KHI cân
b) tính BHC biết góc BAC=80 độ
Cho tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại I và góc BIC=135°, kẻ IE vuông góc AB, IF vuông góc AC
a, Tính góc BAC b, Tính góc BIF (vuông góc) hoặc ( cân )
Không nhớ rõ hihi
a) Ta có: \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{ICB}+\widehat{IBC}=45^0\)
\(\Leftrightarrow\widehat{BAC}=90^0\)
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
cho tam giác ABC vuông tại A. các tia phân giác của góc B và góc C cắt nhau tại I. kẻ IH vuông góc với BC (\(H\in BC\)). biết HI = 1 cm ; HB = 2 cm , HC = 3 cm. tính chu vi tam giác ABC
hic giúp mk đi xin lun đó !!!! zời ơi mấy người hok giỏi trong olm đâu zùi chán vãi !!!!
5665876978
cho tam giác abc vuông tại a. Các tia phân giác của các góc B và góc C cắt nhau tại I. Kẻ IH vuông góc BC, biết HI = 1 cm, HB = 2cm, HC = 3 cm. tính chu vi hình tam giáC ABC
Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: Tam giác HAK cân
b) Chứng minh rằng: BH = CK.
c) Tính độ dài các đoạn thẳng AH và BH, biết AB = 9cm, AC = 12cm.
a: gọi giao của tia phân giác góc A với HK là E
Xét ΔAHK có
AE vừa là đường cao, vừa là phân giác
=>ΔAHK cân tại A
b: ΔAHK cân tại A
=>góc BHI=góc AKH
=>góc BHI=góc BIH
=>ΔBIH cân tại B
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )
a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm
Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.
a. Chứng minh tam giác ABI = tam giác AHI
b. HI cắt AB tại K. Chứng tỏ rằng BK=HC
c. Chứng minh rằng BH // KC
d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều
Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)
a. Chứng minh : tam giác AHB= tam giác AHC
b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân
d. Chứng minh BM // AC
Bài 1: Cho tam giác MNP vuông tại M. Kẻ MH vuông góc với NP ( H thuộc NP )
a) Tìm các cặp góc phụ nhau trên hình
b) Tìm các cặp góc nhọn bằng nhau trên hình
Bài 2: Cho tam giác ABC có góc A = 60 độ , góc C = 50 độ. Tia phân giác của góc B cắt AC tại D. Tính góc ADB, CDB
Bài 3: Cho tam giác ABC, điểm M nằm trong tam giác đó. Tia BM cắt AC ở K
a) So sánh góc AMK và góc ABK
b) So sánh góc AMC và góc ABC
Bài 4: Cho tam giác ABC có góc A = 100 độ, góc B - góc C = 20 độ. Tính góc B, góc C
Bài 5: Cho tam giác ABC có góc B = 70 độ, góc C = 30 độ. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Tính góc BAC
b) Tính góc ADH
c) Tính góc HAD
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM
cho tam giác ABC có AB=AC . tia phân giác của góc BAC cắt BC Tại M .đường thẳng qua M vuông góc với AB tại H đường thẳng qua M cắt AC tại K a/CM tam giác AMB=AMC b/CM tam giác AKm=AHM từ đó so sánh AH và HK c/HK vuông góc AM