Cho tam giác ABC vuông tại A. Lấy M;N là các điểm bất kì trên AB; AC . So sánh độ dài các đoạn thẳng MB; MC; BC
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM
a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H
kẻ AK vuông gói với MC tại K
CMR : BH = MK
c. CMR : HC // BM
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
cho tam giác ABC vuông tại A, lấy K là trung điểm BC, trên tia đôi của tia KA lấy D sao cho KD=KA.
a) chứng minh CD // AB
b) gọi H là trung điểm của AC, BH cắt AD tại M, DH cắt BC tại .chứng minh tam giác ABH = tam giác CDH
c) chứng minh tam giác HMN cân
a)
xét tam giác ABK và tam giác DCK có:
KB=KB(gt)
KA=KD(gt)
BKA=DKC(2 góc đđ)
suy ra tam giác ABK=DCK(c.g.c)
suy ra BAK=DCK
suy ra AB//CD
b)
theo câu a, ta có tam giác ABK=DCK(c.g.c0
suy ra AB=DC
ta có: AB//DC mà BAK= 90 độ suy ra DCK=90
xét tam giác ABH và CDH có:
AB=CD(cmt)
HA=HC(gt)
BAH=DCH=90
suy ra tam giác ABH=CDH(c.g.c)
Cho tam giác ABC vuông tại A,đường cao AH.Trên tia đối của tia AH lấy điểm D sao cho AD=BC , trên tia đối của tia CA lấy điểm E sao cho CE=BC.Chứng minh rằng
a) Tam giác ABD=tam giác CBD;
b)Tam giác BDE vuông cân;
c)Qua A kẻ Đường vuông góc với BD cắt BD tại I,cắt DE tại K.Tính góc CKE
a) câu a sửa lại đề nhé
tam giác ABD = tam giác CBE
Cho tam giác ABC vuông tại A, tia phân giác của góc AB cắt AC tại D, lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh tam giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. Chứng minh ED = AM.
Cho tam giác ABC vuông tại A có AB=AC. Tia phân giác cua góc A cắt BC tại M
Chúng minh AM là đường trung trực của BCTrên tia đối của tia MA lấy D sao cho MA=MD.Chứng minh CA=CDChứng minh tam giác ABC=tam giác CDA và AM=1/2BCTrên MC lấy E từ B và C kẻ BH và CK cùng vuông góc với AE.Chứng minh tam giác ABH=tam giác CAKChứng minh MH=MKChứng minh tam giác MHK là tam giác vuôngCho tam giác ABC có AB<BC trên cạnh BC lấy điểm D sao cho BE=BD kẻ tia phân giác Bt của góc ABC cắt cạnh AC tại E ,AD cắt BE tại H a, CM tam giác BAE=BDE b, CM HA=HD c, Trên tia BA lấy điểm M sao cho BM=BC. kẻ CK vuông góc với Bt tại K.CM ba điểm C,K M thẳng hàng ghi giả thiết kết luận
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F
a: Xet ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác củagóc BCD
b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
=>ΔCEF cân tạiC
Xet ΔCDB có CE/CD=CF/CB
nên EF//DB
c: IE=IF
IF<IB
=>IE<IB
Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E: AD = AE. Các đương thẳng vuông góc vẽ từ A và E với CD cắt BC ở G và H. Đương thẳng AB và EH cắt nhau ở M. Đường thẳng vẽ từ A//BC cắt HM tại I. Cm :
a) Tam giác ACD = tam giác AME
b) Tam giác AGB = tam giác MIA
c) BG = GH
Cho tam giác ABC vuông cân tại A, M là trung điểm của BC, lấy E thuộc BC; BH vuông góc AE, CK vuông góc AE (H, K thuộc AE)
Cm: tam giác MHK vuông cân
Bài này có vấn đề rồi bạn xin hãy kiểm tra lại đề bài
Đúg rồi mak bn, nếu bn thấy sai ở đâu thì chữa giùm mk với chứ mk ghi đề như thế nak