Tìm chữ số tận cùng của 92007 và 32004
a) Tìm chữ số tận cùng của 5^55
b) Tìm chữ số tận cùng của 10^23
c) Tìm chữ số tận cùng của 6^49
d) Tìm chữ số tận cùng của 11^11
e) Tìm chữ số tận cùng của 9^18
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Tìm 2 chữ số tận cùng của 2^2014 và 5^2014
b,Tìm 2 chữ số tận cùng của 7^9^9
Giúp mình 2 bài này với và làm đầy đủ hộ mình nha
Bài 1:
Tìm chữ số tận cùng của:192^150
Tìm chữ số tận cùng của:1734^2001
Tìm chữ số tân cùng của:1989^2003-1973^2001
Bài 2:
Tìm chữ số tận cùng của:1092^2002-204^2001
Tìm 1 chữ số tận cùng của số sau: 789^5^7^3
Tìm 2 chữ số tận cùng của số sau: 14^101 và 99^99^99
Chữ số tạn cùng là số 9 nha bạn!! Thân
b, 99^99^99 = 99^2k+1
= (99^2)^k.99
= (....01).99
= (.......99)
2 chứ số tận cùng của 99^99^99 là 99
Tìm chữ số tận cùng của:192^150
Tìm chữ số tận cùng của:1734^2001
Tìm chữ số tận cùng của:1989^2003-1973^2001
a)(...4)
b)(...4)
c)(...6)
tích đúng cho mình nha
Tìm 3 chữ số tận cùng của 72018
Tìm 5 chữ số tận cùng của 20182019
Tìm 4 chữ số tận cùng của 200221352+5
Dùng cách đồng dư nha
Ai đúng và nhanh nhất mình tk
Tìm 4 chữ số tận cùng của 5^1994. Chứng minh n và n^5 có chữ số tận cùng giống nhau
Lay 4 chu so thi dong du voi 10000
5^1994=5^2*(5^4)^498
5^4=625 dong du 625 mod 10000
625^2=390625 dong du 625 mod 10000
=>625^n luon dong du 625 mod 10000
=>(5^4)^498 dong du 625 mod 10000
=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000
hay la 5^1994 dong du 15625 mod 10000
Vay 4 chu so tan cung cua 5^1994 la 5625
kết luận chữ số tận cũg có 4 chữ số
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Bài 3:
A =4 x 4 x 4 x...x 4(2023 chữ số 4)
vì 2023 : 2 = 1011 dư 1
A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)
A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\) x 4
A = \(\overline{...6}\) x 4
A = \(\overline{...4}\)
- Tìm 2 chữ số tận cùng của 2^2015
- Tìm 2 chữ số tận cùng của 7^2017
2^2015=(2^20)^100x2^15=...76^100x32768=a76xb68=c68 vậy a^2015 có tận cùng=68
7^2017=(7^8)^2008x7^9=a01^2008xb07=c07