cmr
M=\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) (x,y,z,t\(_{\in}\) \(ℕ^∗\) ) co gia tri khong phai la so tu nhien
Cho x ; y ; z ; t : CM : \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)co gia tri khong phai la so tu nhien
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tinh gia tri cua da thuc\(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
cho x,y,z la cac so thuc thoa x+y+z=0, x+1>0, y+1>0, z+1>0. tim GTLN cua P=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}\)
cho x,y,z,t la cac so duong. tim GTNN cua A=\(\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)
Cho x,y,z thuôc̣ N sao. CMR
M=\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
không phaỉ la sô tu nhiên
Cho \(\frac{x}{y+z+t}\)=\(\frac{y}{z+t+x}\)=\(\frac{z}{t+x+y}\)=\(\frac{t}{x+y+z}\)
CMR : bieu thuc sau co gia tri nguyen P = \(\frac{x+y}{z+t}\)+\(\frac{y+z}{t+x}\)+\(\frac{z+t}{x+y}\)+\(\frac{t+x}{y+z}\)
dùng tính chất của dãy tỉ số bằng nhau từ đó suy ra x=y=z=t là chứng minh được.
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
\(Cho:\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+y+t}=\frac{t}{x+y+z}.TínhF=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
từ đó =>3x=y+z+t
=>4x=x+y+z+t
tương tự=>4y=x+y+z+t
4z=x+y+z+t
4t=x+y+z+t
=>x=y=z=t=>F=4
mà bài này lớp 7 chứ,có phải lớp 9 đâu
dãy đó ra bằng 1/3. nhưng sao suy ra đc x=y=z=t vậy?
cho các số dương x,y,z,t . Chứng minh: \(\frac{40}{3}\le\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\)
\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)
Đẳng thức xảy ra khi x = y = z = t > 0
Cho x,y,z,t thỏa mãn \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{y}{t+x+y}=\frac{t}{x+y+z}\)
Tính \(P=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)Khi đó \(P=1+1+1+1=4\)
Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)