tính nhanh
A= \(\frac{1}{1.2.3.4}\)+\(\frac{1}{2.3.4.5}\)+\(\frac{1}{3.4.5.6}\)+.........+\(\frac{1}{27.28.29.30}\)
tính\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
Tính
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{47.48.49.50}\)
tính tổng:
\(a=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
tính:
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{97.98.99.100}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)
hai bạn trước đó gửi sai hết rùi. đúng theo sách NÂNG CAO PHÁT TRIỂN TOÁN 6 TẬP 2 thì bài này có đáp án thì bằng 1353/8120 nhé
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{200.201.202.203}\)
tính tổng trên
Lại phải giải hết
Gọi dãy số trên là A
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{200.201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-.....+\frac{1}{200.201.202}-\frac{1}{201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{201.202.203}\)(chỗ này lm hơi tắt tí )
\(3A=\frac{1}{6}-\frac{1}{8242206}=\frac{1373701}{8242206}-\frac{1}{8242206}=\frac{1373700}{8242206}\)
\(A=\frac{1373700}{8242206}:3=\frac{457900}{8242206}\)
\(y=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
Giải tiếp(ko chép đề)
= 1/1 - 1/2 - 1/3 - 1/4 + 1/2 - 1/3 - 1/4 - 1/5 + ... + 1/27 - 1/28 - 1/29 - 1/30
= 1 - 1/30
= 29/30
ks nha
Bài giải :(không chép đề)
=1-1/2-1/3-1/4-1/5+1/2-1/3-1/4-1/5+........+1/27-1/28-1/29-1/30
=1-1/30
=29/30
Vậy số cần tìm là:29/30 Suy ra Y=29/30
\(\frac{1}{1.2.3.4}=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}\right)\)
\(\frac{1}{2.3.4.5}=\frac{1}{3}\left(\frac{1}{2.3.4}-\frac{1}{3.4.5}\right)\)
.........
\(\frac{1}{27.28.29.30}=\frac{1}{3}\left(\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}\right)+\frac{1}{3}\left(\frac{1}{2.3.4}-\frac{1}{3.4.5}\right)+...+\frac{1}{3}\left(\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
CÒN LẠI TỰ LÀM NỐT, MỎI TAY QUÁ RÙI =))
Tìm x: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+..+\frac{1}{27.28.29.30}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)
\(\Leftrightarrow x\approx0,0648\)
Tính tổng : A = \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{98.99.100.101}\)
Tính tổng A=1/1.2.3.4+1/2.3.4.5+1/3.4.5.6+...+1/27.28.29.30
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
=> \(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{27.28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}=\frac{14.29.10-1}{28.29.30}=\frac{4059}{28.29.30}\)
=> \(A=\frac{4059}{28.29.30}:3=\frac{1353}{28.29.30}=\frac{451}{28.29.10}\)
=> \(A=\frac{451}{8120}\)