chứng minh rằng :1 phần 10 + 1 phần 11+....+ 1 phần 100 >1
Chứng minh rằng : 100 - (1 + 1 phần 2 + 1 phần 3 + ...+ 1 phần 100 ) = 1 phần 2 + 2 phần 3 + 3 phần 4 + ... + 99 phần 100
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)
cho s =3 phần 10+3 phần 11+3 phần 12+3 phần 13+3 phần 14
Chứng minh rằng 1 nhỏ hơn S nhỏ hơn 2
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
\(\Rightarrow\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}< S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\frac{3}{14}\times5< S< \frac{3}{10}\times5\Rightarrow\frac{15}{14}< S< \frac{3}{2}\)
mà \(\frac{15}{14}>1;\frac{3}{2}< 2\Rightarrow1< S< 2\)
Chứng tỏ tổng sau đây:
M=1 phần 10 +1 phần 11+1 phần 12+...+1 phần 99+1 phần 100 luôn lớn hơn 1
A bằng 1 phần 10 cộng 1 phần 11 cộng 1 phần 12 cộng 1 phần 13 cộng ... cộng 1 phần 69 cộng 1 phần 70, chứng tỏ rằng A < 51 phần 20
cho G = 1 phần 100 mũ 2 + 1 phần 101 mũ 2 + 1 phần 102 mũ 2 +...+ 1 phần 198 mũ 2+ 1 phần 199 mũ 2
chứng minh rằng : 1 phần 200 < G< 1 phần 99
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
chứng minh rằng 1 phần 2 mũ 2 cộng 1 phần 3 mũ 2 + 1 4 mũ 2 chấm chấm chấm 1 phần 100 mũ 2 nhỏ hơn 1
Gỉa sử\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
=>\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(A< 1-\dfrac{1}{100}\)
=>\(A< \dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\)
=>A<1
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
1/2^2 + 1/3^2 + ...+ 1/100^2
Ta có : 1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/100^2 < 1/99.100
=> 1/2^2 + ...+1/100^2 < 1/1.2+1/2.3+...+1/99.100
= 1 - 1/2+1/2-1/3+1/3+...+1/99-1/100
= 1 - 1/100 <1
-> 1/2^2 + ...+1/100^2 < 1
Chứng minh rằng: a , 1 phần 5 + 1 phần 10+ 1 phần 13+ 1 phần 19+ 1 phần 31+1 phần 39 + 1phần 43<2 phần 3
giúp mik với,thanks mik sẽ cho bạn thêm xu
cho M = 1 phần 2 . 3 phần 4 . 5 phần 6.........99 phần 100
N = 2 phần 3 . 4 phần 5 . ......... .100 phần 101
a) chứng minh M bé hơn N
b) tìm tích M.N
c) chứng minh M bé hơn 1 phần 10
Ta có:
M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)
M=\(\frac{1.3....99}{2.4....100}\)
Lại có:
N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)
N=\(\frac{2.4....100}{3.5....101}\)
\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)
\(\Rightarrow\)M.N=\(\frac{1}{101}\)
chứng minh rằng 1 phần 22 + 1 phần 32 + 1 phần 42 + ... + 1 phần 1002 <1
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)
....
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)
do đó \(A<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
=>A<1
sẽ là 1/4+1/9+1/16........tổng sẽ ko lớn hơn 1