cho a,b,c>0 Tìm giá trị lớn nhất của \(\frac{\left(a+b\right)^2}{2c^2+b^2+a^2}+\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+a^2+c^2}\)
Cho a,b,c>0. CM
\(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\frac{\left(2b+c+a\right)^2}{2b^2+\left(c+a\right)^2}+\frac{\left(2c+a+b\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Không mất tính tổng quát, chuẩn hóa a + b + c = 1
Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)
Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*
Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c
Chuẩn hóa ta có : \(a+b+c=3\)
=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)
Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)
<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)
<=> \(4a^3-5a^2-2a+3\ge0\)
<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng
Khi đó
\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
bài lớp 10 em chưa hok nha anh
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cho ba số thực dương x,y,z thỏa mãn \(\frac{ac\left(b-1\right)}{b\left(a+c\right)}=\frac{4}{3}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{2\left(a+b\right)^2}{2a+3b}+\frac{\left(b+2c\right)^2}{2b+c}+\frac{\left(2c+a\right)^2}{c+2a}\)
Cho a,b,c là các số thực dương. Tìm max A
A=\(\frac{\left(b+c+2a\right)^2}{\left(b+c\right)^2+2a^2}+\frac{\left(c+a+2b\right)^2}{\left(c+a\right)^2+2b^2}+\frac{\left(a+b+2c\right)^2}{\left(a+b\right)^2+2c^2}.\)
UCT nạ :(
:( Đại Ka ơi a up câu nào khó hơn đi :( :v
Solution:
Vế trái có tính thuần nhất theo 3 biến nên ta chuẩn hóa a+b+c=3.
Điểm rơi: a=b=c=1.
Khi đó:
\(A=Sigma\frac{\left(3+a\right)^2}{2a^2+\left(3-a\right)^2}\)(em ko biết kí hiệu tổng sigma ạ :v)
\(3A\Rightarrow Sigma\frac{\left(3+a\right)^2}{a^2-2a+3}\)
UCT :v
Ta cần tìm m và n sao cho
\(\frac{\left(3+a\right)^2}{a^2-2a+3}\le ma+n\) (Luôn đúng với 0<a<3)
Với điểm rơi a=1 ta có m+n=8 => n=8-m.
Ta tìm m sao cho: \(\frac{\left(3+a\right)^2}{a^2-2a+3}\le m\left(a-1\right)+8\) (luôn đúng với 0<a<3).
Đến đây giải ra ta tìm được m=4 và n=4
Ta dễ dàng cm được: \(\frac{\left(3+a\right)^2}{a^2-2a+3}\le4\left(a+1\right)\)(với o<a<3) ( cái này chứng minh tương đg) :v
Suy ra \(3A=Sigma\frac{\left(3+a\right)^2}{a^2-2a+3}\le4\left(a+b+c\right)=24\)
=> a<=8
Max A=8 <=> a=b=c=1
UCT => ez nha anh :)
M hơi ghê rồi đó con :v sang fb t sent bài cho :(
Cho các số thực dương a , b , c thay đổi luôn thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+a+c\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)
ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)
\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)
ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z
\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)
\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)
=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)
tiep tuc ap dung bo de thu 2 ta co
\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1
Nguồn : mạng :V vào thống kê coi hình
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
(Vào thống kê hỏi đáp xem ảnh nhé! 2 cách, cách đầu dùng kỹ thuật uvw, cách kia là SOS)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{9}{a+b+c}=0\)
\(\frac{bc}{abc}+\frac{ac}{bca}+\frac{ab}{cab}-\frac{9abc}{\left(a+b+c\right)abc}=0\)
\(\left(A+b+c\right)bc+\left(a+b+c\right)ac+\left(a+b+c\right)ab-9abc=0\)
\(b^2c+c^2b+abc+a^2c+c^2a+abc+a^2b+b^2a+abc-9abc=0\)
\(b^2c+c^2b+a^2c+c^2a+a^2b+b^2a-6abc=0\)
\(c\left(b^2+a^2\right)+b\left(c^2+a^2\right)+a\left(c^2+b^2\right)-6abc=0\)
\(c\left(b^2+a^2-2ab\right)+b\left(c^2-2ac+a^2\right)+a\left(c^2+2cb+b^2\right)=0\)
\(c\left(b-a\right)^2+b\left(c-a\right)^2+a\left(c-b\right)^2=0\)
\(\)
\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}+\frac{c^2a^3}{b^2+\left(c+a\right)^3}+\frac{a^2b^3}{c^2+\left(a+b\right)^3}\ge\frac{9abc}{4\left(3abc+a^2c+b^2a+c^2b\right)}\)voi a,b,c>0
Cho abc=36,\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) .Tính
Q=\(\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\cdot\frac{b^2\left(c^2+a^2\right)-c^2a^2}{a^2b^2c^2}\cdot\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)