Tìm n thuộc N để phân số 63/3n+1 là phân so tối giản
Tìm n thuộc N để phân số 63/3n+1 là phân so tối giản
Tìm n thuộc N để phân số 63/3n+1 là phân so tối giản
Tìm n thuộc N để phân số 63/3n+1 la phân số tối giản .minh dang gap
Tìm n thuộc N* để:
a) 5.n-3/ 2.n +1 là phân số tối giản
b) 2.n^2 -3n+6 /2.n-1 là phân số không tối giản
Tìm n thuộc N để phân số 3n+2/7n+1 là tối giản.
tìm n thuộc N để 3n+5/2n+1 là phân số tối giản
giải
n bằng 2 và 0
thì được 2 số: 32 và 21
32+5=37 và 20+1=21.
ta được một phân số tối giản là: 37/21
lúc nãy milk nhầm nhé.k cho milk nhé
mik cần ngay và luôn.giúp mik với
n là 2 và 1 được phân số tối giản là: 37/21
Cho A=3n-13/n-1(n thuộc Z)
Tìm n là số nguyên để A là phân số tối giản
Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$
$\Rightarrow 3n-13\vdots d; n-1\vdots d$
$\Rightarrow 3(n-1)-(3n-13)\vdots d$
$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$
Để phân số trên tối giản thì $d\neq 2,5,10$
Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$
$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Cho biểu thức M = 3n+19/n-1
a) Tìm n thuộc N* để M là một số tự nhiên
b) Tìm n thuộc Z để M là 1 phân số tối giản
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}