tìm các số nguyên x y thỏa mãn các đẳng thức sau:
x/y=1983
x-y=-658
tìm các số nguyên x và y tm đẳng thức sau
xy=1983 và x-y=-658
tìm các số nguyên x và y thỏa mãn cả hai đẳng thức sau :
xy=1983
x+y=-658
=>x,y là các nghiệm của pt là:
x^2+658x-1983=0
=>(x+681)(x-3)=0
=>x=3 hoặc x=-681
=>(x,y)=(3;-681) hoặc (x;y)=(-681;3)
tìm các số nguyên x,y thỏa mãn đẳng thức y^2-(y-2)x^2=1
Tìm các số nguyên tố x,y,z thỏa mãn đẳng thức :x^y+1=z
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
bạn ơi ! Bạn please cho mình cách giải v~
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)
Tìm các cặp số nguyên (x; y) thỏa mãn đẳng thức: \(x^2y+3x^2-4y=15\)
Tìm x, y là các số nguyên thỏa mãn đẳng thức xy^2 = x^2 + x +2
Tìm các số nguyên x,y thỏa mãn đẳng thức: y2 - ( y+2 )*x2 = 1
Tìm các cặp số nguyên ( x;y ) thỏa mãn đẳng thức : x - y + 2xy = 3