Cho a>1, b>1 . Tìm GTNN của biểu thức \(G=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
Cho a>1 b>1 Tìm GTNN của biểu thức \(M=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
\(M=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a^2-1}+4\left(a-1\right)-4a-4b+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}\cdot4\left(a-1\right)}-4a-4b+8=4a+4b-4a-4b+8=8\) (AM-GM)
Dấu "=" xảy ra <=> a=b=2
Cho a,b,c > 1. Tìm GTNN của biểu thức: \(P=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
cho a, b là 2 só dương có a + b = 1 . Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{ab}\)
\(A=\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)
cho a,b,c>0 và a+b+c<=3/2 . Tìm GTNN của biểu thức:
\(S=a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
Cho các số thực dương a,b,c. Tìm GTNN để biểu thức:
\(G=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
Theo em nghĩ bài này ko thiếu điều kiện đâu cô quản lí ạ !!!
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)\)
Áp dụng BĐT AM-GM, ta có:
\(a^2+1=a.a.1+1\le\frac{a^3+a^3+1}{3}+1=\frac{2.\left(a^3+2\right)}{3}\)
\(b^2+1=b.b.1+1\le\frac{b^3+b^3+1}{3}+1=\frac{2.\left(b^3+2\right)}{3}\)
Do đó:
\(\left(ab+1\right)^2\le\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)
\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\)
\(\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}.\sqrt{\frac{a^3+2}{b^3+2}}\) \(\left(1\right)\)
Tương tự, ta có:
\(\frac{b^3+2}{bc+1}\ge\frac{3}{2}.\sqrt{\frac{b^3+2}{c^3+2}}\) \(\left(2\right)\)
\(\frac{c^3+2}{ca+1}\ge\frac{3}{2}.\sqrt{\frac{c^3+2}{a^3+2}}\) \(\left(3\right)\)
Cộng theo vế của \(\left(1\right)\), \(\left(2\right)\) và \(\left(3\right)\) và áp dụng BĐT AM-GM, ta có:
\(G\ge\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\) \(\ge\frac{3}{2}.3\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{9}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy: \(G_{min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)
Nếu có thể thì cô Chi check xem nick Đinh Uyển Tình và Đông Phương Lạc có cùng địa chỉ máy tính không ạ??
Bạn Đông Phương Lạc tự đăng tự tl ko bt nhục à
@ Tuấn Lâm@ Hai bạn không cùng địa chỉ IP em nhé! Là bạn học tốt!
cho a,b,c > 0 và a+ b + a <hoặc bawngf1. tìm GTNN của biểu thức
M = \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
Cho a,b,c>0; \(a+b+c\le\frac{3}{2}\)Tìm GTNN của biểu thức \(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
S = a+b+c + (1/a + 1/b + 1/c)
>= (a+b+c) + 9/a+b+c
= [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)
>= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\) + 27/(4.3/2)
= 3 + 9/2
= 15/2
Dấu "=" xảy ra <=> a=b=c=1/2
Vậy ......
Tk mk nha
bài này còn có thể theo phương pháp chọn điểm rơi trong bài toán cực trị, bạn thử tìm hiểu nhé!!!!
Mọi người ơi giúp em với ạ. Em cần trước 16h thứ 4 ngày 22/7/2020 ạ. Dùng BĐT Cosy ạ. Cảm ơn mọi người nhiều ạ
1) Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của biểu thức \(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
2) Cho x,y>0 thỏa mãn \(x+y\le1\). Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
3) Cho a,b>0 thỏa mãn \(a+b\le1\).Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{b}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
Bài tập sử dụng BĐT Cauchy
B1: Cho số thực \(a\ge6\). Tìm GTNN của biểu thức
\(A=a^2+\frac{18}{a}\)
B2: Cho các thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của biểu thức
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
B3: Cho a,b là các số thực dương tùy ý. Tính GTNN của biểu thức
\(A=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
B1
Ta có
\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)
Dấu "=" xảy ra <=> a=6
Vậy Min A = 39 <=> a=6
\(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)
Đẳng thức xảy ra khi a = 6
B3: Áp dụng bđt AM-GM
\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)
\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(a=b>0\)