Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
luu thanh huyen
Xem chi tiết
Phan Hải Đăng
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 7:14

Ta có:

\(x\sqrt{y}-y\sqrt{x}=\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\le\sqrt{x}\left(\frac{\sqrt{y}+\sqrt{x}-\sqrt{y}}{2}\right)^2\le\frac{x}{4}\le\frac{1}{4}\)(BĐT AM-GM)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\\sqrt{y}=\sqrt{x}-\sqrt{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

Khách vãng lai đã xóa
Phùng Gia Bảo
Xem chi tiết
Nguyễn Linh Chi
7 tháng 3 2020 lúc 16:19

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

Khách vãng lai đã xóa
ngoc bich 2
Xem chi tiết
Nguyễn Khang
6 tháng 8 2019 lúc 10:39

Sai đề à? x = y = 1 thì VT  > 1/4

ngoc bich 2
6 tháng 8 2019 lúc 13:45

Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.

Hoàng Hiếu Võ
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Mai Thanh Hải
Xem chi tiết
Tran Le Khanh Linh
3 tháng 5 2020 lúc 8:29

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{y}\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3)(4) ta có:\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết
Tran Le Khanh Linh
3 tháng 5 2020 lúc 13:25

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-x\right)\left(\frac{1}{\sqrt{2}}-y\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3) và (4) ta có:

\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Châu Trần
Xem chi tiết
alibaba nguyễn
15 tháng 6 2017 lúc 11:12

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

Băng băng
15 tháng 6 2017 lúc 10:16

khó quá

Songoku Sky Fc11
15 tháng 6 2017 lúc 10:18

KHÓ CHỨ DỄ ĐĂNG LÀM CHI