Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu Huyền
Xem chi tiết
Nguyễn Nhật Minh
12 tháng 12 2015 lúc 15:04

 

+f(0) = a.0+b.0 +c =5 => c =5

+f(1)= a.1 +b.1+ 5 = 0 => a+b =-5 (1)

+ f(5) =a.52 +b.5 +5 =0 => 5a +b =-1 (2)

(10(2) => 4a +(a+b) =-1 => 4a -5 =-1 => 4a =4 => a =1

                                                           => b =-5-a = -5 -1 = -6

Vậy a =1; b =-6 ; c =5

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:51

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Vũ Phương Thảo
Xem chi tiết
Duyên
Xem chi tiết
Vũ Thu Huyền
Xem chi tiết
buitanquocdat
11 tháng 12 2015 lúc 20:55

Theo de ta co:

f(0) = a.02+b.0+c = c =1

f(1)=a.12+b.1+c = a+b+1 = 2  => a+b = 1

f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4  => 2(2a+b) = 3  => 2a+b = 3/2 => b = 3/2 - 2a

Thay b=3/2 - 2a vao bieu thuc: a+b=1  ta duoc:

a+3/2-2a = 1

3/2-a= 1

=> a = 3/2 - 1 = 1/2

Suy ra: b = 3/2 - 2.1/2  = 1/2

Vay: a = 1/2   ;    b=1/2       ;      c=1

Vịt Biết Gáyyy
Xem chi tiết
Trương Huy Hoàng
17 tháng 1 2021 lúc 23:11

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

Anh Cao Ngọc
Xem chi tiết
Sakamoto Sara
Xem chi tiết
Tạ Thanh Chúc
30 tháng 12 2015 lúc 12:37

f(x)=ax+ bx+ c

f(0)=1, f(1)=2, f(2)=2

=>c=1;a+b+c=2;4a+2b+c=2

=>a+b=1;4a+2b=1

=>a+b=4a+2b

=>4a+2b-a-b=0

=>3a-b=0

 

Ngọc Đoàn
Xem chi tiết