Tìm tất cả các bộ ba số nguyên dương (a;b;c) thỏa mãn :
\(a\le b\le c\)và \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=2\)
Tìm tất cả bộ ba số nguyên dương (a,b,c) sao cho (a+b+c)^2-2a+2b là số chính phương
tìm tất cả các bộ ba số nguyên dương (x,y,z) thỏa mãn xyz= \(x^2-2z+2\)
Tìm tất cả các bộ ba số nguyên dương (p;q,n) , trong đó p,q là các số nguyên tố , thỏa mãn :
p(p+3) + q(q+3)=n(n+3)
tìm tất cả các bộ số nguyên dương (a,b,c) thỏa mãn: a.b.c=a+b+c+9
Tìm tất cả bộ ba số(a;b;c) là các số nguyên dương thỏa mẫn a<=b<=c và (1+1/a).(1+1/b).(1+1/c)=2
Giúp mik nhé, cảm ơn
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Tìm Tìm tất cả các bộ ba số nguyên tố a, b, c sao cho abc < ab + bc + ca
Vì a, b, c có vai trũ như nhau nên giả sử a ≤ b ≤ c khi đó
( Vì a là số nguyên tố )
Với a = 2 ta có
- Nếu b = 2 thì 4c < 2 + 4c thoả món với c là nguyên tố bất kỡ
- Nếu b = 3 thì 6c < 6b + 5c suy ra c < 6 vậy c = 3 hoặc c = 5
Vậy các cạp số (a, b, c) càn Tìm là (2, 2, p) ; (2, 3, 3 ) ; (2, 3, 5 ) và các hoán vị vủa chúng , với p là số nguyên tố .
tìm tất cả các bộ ba số (x,n,p) với các số x,n là là các số nguyên dương và p là số nguyên tố thỏa
mãn :
\(x^3+2x=3\left(p^n-1\right)\)
Tìm tất cả bộ ba số nguyên dương thỏa mãn :
\(2^x+1=7^y+2^z\)
Em làm cô vui lòng xem giúp em ạ
Có: \(x,y,z>0\)
Nên: \(7^y>1\)
Mà \(7^y+2^z=2^x+1\)(1)
\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)
Xét TH1: y lẻ
Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)
\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)
Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)
\(\Leftrightarrow7^y-1\equiv2\)(mod 4)
Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)
Thay vào PT: \(2^x-2=7^y-1\)
\(\Leftrightarrow2^x=7^y+1\)
\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)
Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)
Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)
TH2: Khi y chẵn:
\(2^z\left(2^{x-z}-1\right)=7^y-1\)
Vì y chẵn nên:
\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)
Vì: \(2^{x-z}-1\equiv1\)(mod 2)
Nên: \(2^z=16\Rightarrow z=4\)
Thế vào:
\(2^x+1=7^y+16\)
\(\Leftrightarrow2^x=7^y+15\)
\(\Leftrightarrow2^x=7^y+7+8\)
\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)
\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)
Vì S chia hết cho 8
nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)
\(\Rightarrow y=2\)
Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)
Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)
@ Khôi@ Bài em làm hay lắm.
Tuy nhiên tại sao \(2^z=16\) em đã biết C có chia hết cho 2 hay ko chia hết cho 2 đâu.
Lí do: Nếu y chẵn thì:
y= 2k ( k nguyên dương bất kì)
\(2^z\left(2^{x-z}-1\right)=7^y-1=7^{2k}-1=\left(7^k-1\right)\left(7^k+1\right)\)
\(=6.A'.8B'=48.A'.B'=48.C=16.3.C\)
Giả sử như k chẵn chẳng hạn
mình sẽ có: \(A'=7^{k-1}+7^{k-2}+...+7+1\)là số chẵn chia hết cho 2
\(B'=7^{k-1}-7^{k-2}+...+7-1\)là số chẵn chia hết cho 2
khi đó C sẽ chia hết cho 4 là số chẵn
Thì lúc đấy không thể xảy ra \(2^z=16\)?????
Tìm tất cả các bộ 3 số nguyên dương thỏa mãn: 2a+5b=7c
Giúp tui với =(((( : Tìm tất cả bộ ba số nguyên dương a,b,c sao cho \(2^a+5^b=7^c\)
THANKS WITH LUV!