Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Changhu
Xem chi tiết
Phi Công Nguyễn
Xem chi tiết
Nguyễn Duy Đại
26 tháng 11 2017 lúc 10:11

a là sao

Phùng Huy Hoàng
Xem chi tiết
Phạm Tuấn Đạt
8 tháng 10 2018 lúc 15:25

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

Nguyễn Trúc Quỳnh
Xem chi tiết
Lại Vũ  Anh
20 tháng 12 2022 lúc 21:08

Hi

 

nguyễn yến nhi
Xem chi tiết
Lung Thị Linh
22 tháng 11 2018 lúc 20:44

a, Gọi d là ƯCLN  của n + 2 và 2n + 3

\(\Rightarrow n+2⋮d\) 

\(\Rightarrow2\left(n+2\right)⋮d\)

\(\Rightarrow2n+4⋮d\)

Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)

=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau

b, Gọi d là ƯCLN của 3n + 1 và 2n + 1

\(3n+1⋮d\) và \(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\) 

\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1

=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau

Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

 Quỳnh Uyên
Xem chi tiết
GV
1 tháng 11 2017 lúc 8:34

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.

Thật vậy, nếu \(d\inƯC\left(2n+1,2n+3\right)\) suy ra:

\(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\) => \(\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮d\)

=> \(2⋮d\) => d = 1 hoặc d =2

Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì \(2n+1⋮2\) (vô lý vì 2n +1 là số lẻ).

=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

Sky Hoàng Nguyễn Fuck
5 tháng 12 2017 lúc 17:05

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu d ∈ ƯC 2n + 1,2n + 3 suy ra:
2n + 1⋮d
2n + 3⋮d
=> 2n + 3 − 2n + 1 ⋮d
=> 2⋮d => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì 2n + 1⋮2 (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

chúc bn hok tốt @_@

Nguyễn Khánh Huyền Linh
Xem chi tiết
Hoàng C5
13 tháng 12 2016 lúc 10:59

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

Nguyễn Thị Mỹ Duyên
Xem chi tiết
Hằng Phạm
5 tháng 1 2016 lúc 19:19

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn