Cho tam giác ABC có AB=12,AC=16,BC=20 .
a) Chứng minh tam giác ABC là tam giác vuông;
b) Trên cạnh AB lấy điểm D sao cho BD = 4 .Từ D kẻ DE//BC (E∈AC).
Tính DE,EC.
c) Tìm vị trí điểm D trên cạnh AB sao cho BD+EC=DE.
Bài 14: Cho tam giác ABC có BC = 16 cm, AB = 20 cm, AC = 12 cm.
a/ Chứng minh tam giác ABC là tam giác vuông. (1,5 điểm)
b/ Tính sin A, t B và số đo góc B, góc A. (2 điểm)
c/ Vẽ đường cao CH. Tính các độ dài CH , BH, HA. (1,5 điểm)
d/ Vẽ đường phân giác CD của ABC. Tính độ dài DB, DA, CD
e/ Đường thẳng vuông góc với BC tại B cắt tia CH tại K. Tính độ dài BK
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔABC vuông tại C
cho tam giác ABC, AB=AC=10cm, BC=12. cho AH vuông góc với BC? a) chứng minh: tam giác AHB=tam giác AHC. chứng minh xem BC là tia phân giác? b) tia BC =AC tính chu vi tam giác ABC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: C ABC=10+10+12=32
Cho tam giác ABC có AC=16, AB=12, BC=20
a) chứng minh tam giác ABC vuông
b) tính đường cao AH
c) từ H vẽ HE, HF lần lượt vuông góc với AC và AB. Tính HE, HF
Cho tam giác ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH ( H thuộc BC ).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC từ đó suy ra AB. AC = AH. BC
b) Tính độ dài các đoạn thẳng BC, Ah
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Tam giác ABC có AB=12, AC=16, BC=20. Trên cạnh AC lấy M sao cho AM=3,5. Chứng minh tam giác MBC cân.
Chho tam giác ABC, biết AB=12 cm, BC=20 cm, AC=16 cm
a/ Chứng minh tam giác ABC là tam giác vuông
b/ Vẽ đường cao AH. Tính AH, BH
c/ Giải tam giác vuông ACH
d/ Vẽ phân giác AD. Tính DB, Dc
e/ Tính cosB trong hai tam giác vuông HBA và ABC. Từ đó suy ra AB2 = BH.BC
Cho tam giac ABC có AB = 12 cm, AC = 16 cm, BC = 20 cm, đường cao AH
a) Chứng minh tam giác ABC là tam giác vuông
b) Tính AH, BH và tỉ số lượng giác của góc B
c) Từ một điểm D trên cạnh AB kẻ đường thẳng song song với BC cắt cạnh AC tạ E tìm D sao cho BD + EC = DE
1. Cho tam giác ABC đường cao AH và trung tuyến AM chia góc A thành 3 góc = nhau, K thuộc AC:AK=AH.CMR: a) góc AKM vuông b) Tính các góc của tam giác ABC
2. Cho tam giác ABC đều. D thuộc BC :BD=1/3 BC. ĐỂ vuông góc với BC ( E thuộc AB ). DF vuông góc với AC ( F thuộc AC ). Chứng minh a) BD =CF b) tam giác DEF đều
3. Cho tam giác ABC vuông tại A: AB = 15 cm, AC =20 cm., AH =12cm. Tính AB và AC
5. Cho tam giác ABC có AB =AC =5 cm, BC =6cm, đường phân giác AF. CMR: a) FB =FD, AF vuông góc với BC b) AF=?
4. Cho tam giác ABC vuông tại A, đường cao AH =6cm, BC =12,5cm, tỉ số HB :HC=9:16. Tính AB, AC
6. Cho tam giác ABC : BC =7,5cm, CA =4,5cm, AB =6cm. Hỏi tam giác ABC là tam giác gì?
7. Cho hình chữ nhật ABCD : AC=29cm, CD =20 cm. Tính diện tích hình chữ nhật
Bài 1. Cho tam giác ABC có AB cm 16 , BC cm 20 và AC cm 12 . a) Chứng minh : ABC vuông tại A . b) Gọi M là trung điểm của BC . KẻMFAC tại F . Chứng minh :FA = FC . c) Gọi E là trung điểm của AB . Chứng minh : ME AB và tính độdài ME . Bài 2. Cho hình thang ABCD có hai đáy là AB và CD . Gọi E, F, K lần lượt là trung điểm các cạnh AD, BC, BD . a) Chứng minh: EK // AB ; KF // AB và E, F, K thẳng hàng. b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC . c) Chứng minh : IE = KF và KE = IF. d) Cho biết AB 6 cm ; CD 10 cm . Tính IK.