Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Kelly
Xem chi tiết
Phạm Xuân Sơn
Xem chi tiết
Xyz OLM
12 tháng 1 2020 lúc 10:07

Ta có : \(\frac{a-b}{2a+b}=\frac{b-c}{b+c}=\frac{b+2c}{-a-b}\)

=> \(\frac{a-b+b-c+b+2c}{2a+b+b+c-a-b}=\frac{a+b+c}{a+b+c}=1=\frac{1}{a+b+c}\Rightarrow a+b+c=1\)

Khi đó \(\hept{\begin{cases}a-b=2a+b\\b-c=b+c\\b+2c=-a-b\end{cases}\Rightarrow\hept{\begin{cases}a=-2b\\c=0\end{cases}}}\)

Mặt khác a + b + c = 1

<=> -2b + b = 1

=> b = - 1

=>  a = 2

Vậy a = 2 ; b = - 1 ; c = 0

Khách vãng lai đã xóa
Phạm Xuân Sơn
12 tháng 1 2020 lúc 10:34

thank you nhưng bạn ơi còn trường hợp a+b+c=0 nữa

Khách vãng lai đã xóa
Huỳnh Châu Giang
Xem chi tiết
Nguyễn Thị Thùy Giang
4 tháng 2 2016 lúc 17:23

Ta có:A= a/b+c = b/a+c = c/a+b

=>A+1 = (a/b+c)+1 = (b/a+c)+1 = (c/a+b)+1

A+1= a+b+c/b+c = a+b+c/a+c = a+b+c/a+b

A+1= (a+b+c+a+b+c+a+b+c)/(b+c+a+c+a+b)

A+1= 3(a+b+c)/2(a+b+c)

A+1=3/2

=>A=(3/2)-1

A=1/2

Chắc thế

Nguyễn Thị Thùy Giang
4 tháng 2 2016 lúc 17:18

A=1/2.(Hình như thế)

Zz Victor_Quỳnh_Lê zZ
4 tháng 2 2016 lúc 17:22

kho the minh k bit lam

Độc Cô Dạ
Xem chi tiết
Đào Trọng Luân
5 tháng 7 2017 lúc 16:08

1.

a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

=> a = -3.2 = -6

b = -3.3 = -9

c = -3.4 = -12

d = -3.5 = -15

2.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)

=> a = 4

b = 6

c = 8

3.

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=> a2 = 4.4 = 16 => a = +-4

b2 = 4.9 = 36 => b = +-6

2c2 = 4.32 = 128 => c2 = 64 => c = +-8

lương thị hằng
Xem chi tiết
Nguyễn Dương Trung
Xem chi tiết
nguyen thi bao tien
3 tháng 8 2018 lúc 15:00

1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)

2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)

\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)

Ashshin HTN
3 tháng 8 2018 lúc 15:06

1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5

a2 =5
b3 =5
c4 =5
a=10
b=15
c=20

2. Ta có:a2 =b3 ⇒a10 =b15 

b5 =c4 ⇒b15 =c12 

⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7

a10 =−7
b15 =−7
c12 =−7
a=−70
b=−105
c=−84
Hoàng Thu Hà
Xem chi tiết
Bách Nguyễn Bảo
14 tháng 2 2016 lúc 10:43

Ta có \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\) --->\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)

                                                            --->\(\frac{a+b+c}{b+c}=\frac{c+a+b}{a+b}=\frac{b+c+a}{c+a}\)

Nên:\(b+c=a+b=c+a\)

Với \(b+c=a+b\)--->\(c=a\)

Với\(a+b=c+a\)--->\(b=c\)

Từ đó suy ra: \(a=b=c\)--->\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{1}{2}\)\(=A\)

 

kaitovskudo
14 tháng 2 2016 lúc 10:33

A=\(\frac{a+b+c}{\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\)

A=\(\frac{a+b+c}{2\left(a+b+c\right)}\)

Nếu a+b+c=0

=>A=0

Nếu a+b+c\(\ne\)0

=>A=\(\frac{1}{2}\)

Hoàng Phúc
14 tháng 2 2016 lúc 10:35

theo t/c dãy t/s=nhau:

\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

vậy A=1/2

Caitlyn_Cảnh sát trưởng...
Xem chi tiết
Phạm Thế Mạnh
27 tháng 1 2016 lúc 21:51

\(A=\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{2}\)(tính chất dãy tỉ số = nhau)

bùi thị ánh phương
Xem chi tiết
๛Ňɠũ Vị Čáէツ
14 tháng 2 2019 lúc 21:41

 \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{a+b+c}{b+c+a+b+c+a}\)

                                                                \(=\frac{a+b+c}{2\left(a+b+c\right)}\)\(=\frac{1}{2}\)

 Vậy A =1/2