Cho tứ giác ABCD có \(\widehat{B}=\widehat{D}=90^0\). Từ M trên AC kẻ MN⊥BC;MP⊥AD(N∈BC;P∈AD)
a) Chứng minh \(\frac{MN}{BC}+\frac{MP}{AD}=1\)
Cho tứ giác ABCD có \(\widehat{B}=\widehat{D}=90^0\). Từ M trên AC kẻ \(MN\perp BC;MP\perp AD\left(N\in BC;P\in AD\right)\)
a) Chứng minh \(\frac{MN}{AB}+\frac{MP}{CD}=1\)
b) Tương tự hóa với tứ giác ABCD bất kỳ
Cho tứ giác ABCD có \(\widehat{B}=\widehat{D}=90^o\) . Từ một điểm E trên đường chéo AC kẻ EH , EK lần lượt vuông góc với BC và AD. Chứng minh rằng CD . AE . EH = AB . CE . EK
Cho tứ giác ABCD có \(\widehat{A}=90^o;\widehat{D}=90^o\) . Góc A và góc D là hai góc đáy . Trên BC lấy điểm M là điểm nằm giữa sao cho MC=CD , MB= AB . Gọi giao điểm của AC và BD là N chứng minh MN\(\perp AD\)
Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng
Hình vẽ:
Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)
Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)
\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\Rightarrow MN\perp AD\)
1/cho tứ giá lồi ABCD có AB=BC=CD=a , \(\widehat{BAD}=75^o,\widehat{ADC}=45^o\).tính AD
2/cho tứ giác ABCD có\(AB-6\sqrt{3},CD=12,\widehat{A}=60^o,\widehat{B}=150^o,\widehat{D}=90^o\). tính BC
Cho hình thang vuông ABCD(\(\widehat{A}\)=\(\widehat{D}\)=\(^{90^0}\)) có AD<CD; CD=2AB. kẻ BE vuông góc với CD tại E
a,cm tứ giác ABED là hcn
b,kẻ Dh vuông góc vớ AC tại H. Gọi M là trung điểm DH. từ M kẻ đường thẳng song song vớ CD,cắt dường thẳng CD ở N.Cm MN=\(\frac{1}{2}\)CD
c.tính số đo \(\widehat{BND}\)
Cho tứ giác ABDC có \(\widehat{B}\)=\(\widehat{C}\)=900. Gọi H là điểm đối xứng với điểm D qua trung điểm M của BC.
a) Chứng minh tứ giác BHCD là hình bình hành.
b) Từ M kẻ đường vuông góc với BC cắt AD tại I. Chứng minh AH=2AI
c) Từ H kẻ đường thẳng vuông góc với MH cắt AB, AC lần lượt tại E, F. Chứng minh tam giác MEF cân.
Cho tứ giác ABDC có \(\widehat{B}\)=\(\widehat{C}\)=900 Gọi H là điểm đối xứng với điểm D qua trung điểm M của BC.
a) Chứng minh tứ giác BHCD là hình bình hành.
b) Từ M kẻ đường vuông góc với BC cắt AD tại I. Chứng minh AH=2AI
c) Từ H kẻ đường thẳng vuông góc với MH cắt AB, AC lần lượt tại E, F. Chứng minh tam giác MEF cân.
Cho tứ giác ABDC có \(\widehat{B}\).=\(\widehat{C}\)=900 Gọi H là điểm đối xứng với điểm D qua trung điểm M của BC.
a) Chứng minh tứ giác BHCD là hình bình hành.
b) Từ M kẻ đường vuông góc với BC cắt AD tại I. Chứng minh AH=2AI
c) Từ H kẻ đường thẳng vuông góc với MH cắt AB, AC lần lượt tại E, F. Chứng minh tam giác MEF cân.
Cho tứ giác ABCD có: AB=BC;CD=DA.
a) C/m BD là đường trung trực của AC
b) Cho \(\widehat{B}=100^{\sigma},\widehat{D}=80^{\sigma}\) .Tính \(\widehat{A}\) và \(\widehat{C}\).
a) BA=BC(gt)
⇒B thuộc đường trung trực AC
DA=DC(gt)
⇒D thuộc đường trung trực AC
B và D là đường phân biệt cùng thuộc 1 đường trung trực AC nên đường thẳng BD là đường trung trực của AC
b) Xét △BAD và △BCD,có:
BA=BC
DA=DC
BC chung
⇒△BAD=△BCD(ccc)⇒góc BAD= góc BCD
Ta có BAD+BCD+ABC+ADC=360
2BAD=360-ABC-ADC
2BAD=360-100-80
2BAD=180
⇒BAD=BCD=180/2=80