Cho tam giác ABC vuông cân tại A. Vẽ AH _|_ BC. D thuộc đoạn HC. Vẽ hình chữ nhật AHDO.Vẽ (O;OD) cắt tia đối của tia AB tại E, cắt cạnh AC tại F. Chứng minh AE=AF
cho tam giác abc cân tại a vẽ ah vuông bc tại h (h thuộc bc) trên tia đối của tia ha lấy điểm d sao cho ah=hd vẽ hình
a) biết ah=8cm ab=ac=10cm. tính độ dài các cạnh hb hc bc
b) chứng minh rằng tam giác abd cân
a: HB=HC=căn 10^2-8^2=6cm
b: Xét ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD can tại B
Cho tam giác ABC vuông tại A ( AB<AC), vẽ đường cao AH ( H thuộc BC). a) chứng minh tam giác ABC đồng dạng với tam giác HBA b) cho AB = 3cm ; AC = 4cm. tính BC, AH c) trên tia HC, lấy HD = HA. từ D vẽ đường thẳng song song với AH cắt AC tại E. chứng minh CE.CA=CD.CB d) chứng minh tam giác ABE cân
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
Hình vẽ ko được chính xác bạn thông cảm
cho tam giác abc cân tại a vẽ ah vuông bc tại h (h thuộc bc) trên tia đối của tia ha lấy điểm d sao cho ah=hd
a) biết ah=8cm ab=ac=10cm. tính độ dài các cạnh hb hc bc
b) chứng minh rằng tam giác abd cân
Cho tam giác ABC vuông cân tại A có đường cao AH. Trên HC lấy K, vẽ hình chữ nhật AHKO. Vẽ đường tròn tâm O bán kính OK, đường tròn này cắt cạnh AB tại D, cắt AC tại E. Gọi F là giao điểm thứ 2 của (O) và đường thẳng AB. Chứng minh rằng:
a) Tam giác AEF vuông cân và DO vuông góc với OE
b) 4 điểm D,A,O,E cùng nằm trên 1 đường tròn
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).
Bài 1:Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H, AD là phân giác của góc HAC(D thuộc đoạn thẳng HC). Vẽ DK vuông góc với AC tại điểm K
a) Cho BC=5cm,AB=3cm. Tính độ dài đoạn thẳng AC
b) Chứng minh:AH=AK
c) Chứng minh: tam giác ABD cân
d) Chứng minh:AH+BC> AB+AC
Giúp mình với được ko mik đang cần gấp
cho tam giác ABC cân tại A,vẽ đường cao AH. Gọi M,N,E thứ tự là trung điểm của AB,AC,HC, vẽ điểm đối xứng với H qua M
a,C/m tứ giác AHBD là hình chữ nhật
b,C/m AMHN là hình thoi
c,Gọi O là trung điểm AH. C/m D,O,C thẳng hàng
d,Tìm điều kiện của tam giác ABC để AHBD là hình vuông
e, Vẽ HI vuông góc với AC. C/m góc NOE bằng góc IOE
cho tam giác ABC cân tại A có AH là đường cao.Gọi O là trung điểm của AC .Qua A vẽ đường thẳng d//BC cắt HO tại D
a)Chứng minh AHCD là hình chữ nhật
b)Chứng minh ABHD là hình bình hành
c)Tìm điều kiện của tam giác ABC để AHCD là hình vuông
d)Khi AHCD là hình vuông và AB=10cm .Hãy tính chu vi của AHCD
Cho tam giác ABC vuông tại A, góc C= 30 độ. Kẻ AH vuông góc BC (H thuộc BC). Lấy điểm D trên HC sao cho HB=HD, kẻ CE vuông góc AD.
a, Chứng minh tam giác ADC cân
b, Cho AB= 6cm. Tính độ dài AH và BC
Ko vẽ hình cũng ko sao nha
a, B=30*
tgBAH = tgDAH (cgc) => ADH = 60* => ADC = 120* => DAC = 30* = ACD => ADC cân tại D
b,
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC