Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đại Đức
Xem chi tiết
nguyễn hương giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:07

a) \(EF=\sqrt{3^2+4^2}=5\)(cm)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)

b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)

nguyễn lê gia linh
Xem chi tiết
Nguyễn Phạm Hồng Anh
21 tháng 12 2017 lúc 12:23

a, Ta có : e nằm giữa hai điểm d và f

=> de + ef = df

=> df = 5 + 2 = 7cm

b, Vì m là trung điểm của de

=> dm = me = de : 2 = 5 : 2 = 2,5cm

Vì n là trung điểm của ef

=> en = nf = ef : 2 = 2 : 2 = 1cm

Mà e nằm giữa m và n

=> me + en = mn

=> mn = 2,5 + 1 = 3,5cm

nguyễn lê gia linh
21 tháng 12 2017 lúc 12:32

đúng ko bạn??

Chi Chi
Xem chi tiết
Kiệt Nguyễn
14 tháng 11 2019 lúc 18:27

a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)

và \(EF^2=5^2=25\left(cm\right)\)

\(\Rightarrow DE^2+DF^2=EF^2\)

\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông

b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)

\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)

c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)

Lại có IK vuông góc DF

\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF

\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)

Khách vãng lai đã xóa
Chi Chi
Xem chi tiết
Edogawa Conan
14 tháng 11 2019 lúc 12:57

D E F I K

Giải: a) Ta có: DE2 + DF= 32 + 42 = 9 + 16 = 25 

             EF2 = 52 = 25

=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)

b) Xét t/giác DEF có DI là đường trung tuyến

=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)

c) Ta có: DI = IF => t/giác DIF là t/giác cân

có IK là đường cao

=> IK đồng thời là đường trung tuyến

=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)

Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:

DI2 = IK2 + DK2 

=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25

=> IK = 1,5 (cm)

Khách vãng lai đã xóa
vumaithanh
Xem chi tiết
Hồ Hoàng Trúc Vân
30 tháng 4 2019 lúc 22:34

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

xuannghi2018
Xem chi tiết
Dung My
Xem chi tiết
Minh Nhân
20 tháng 5 2021 lúc 19:52

Áp dụng định lý Pytago trong tam giác vuông DEF : 

\(EF^2=DE^2+DF^2\)

\(\Rightarrow EF=\sqrt{8^2+6^2}=10\left(cm\right)\)

Bình TaKu
20 tháng 5 2021 lúc 19:54

Xét tam giác DEF vuông tại D có :
DE^2 + DF^2 = EF^2 (Pitago)
=> EF^2 = 6^2 + 8^2 = 10^2
=> EF = 10cm

Phùng Công Anh
20 tháng 5 2021 lúc 19:59

Áp dụng định lý Pytago trong tam giác vuông DEF : 

\(EF^2=DE^2+DF^2\)

\(\xrightarrow[]{}\)\(\sqrt{EF^2}=\sqrt{DE^2+DF^2}\)

\(\xrightarrow[]{}\)\(\sqrt{EF^2}=\sqrt{8^2+6^2}\)

\(\xrightarrow[]{}\)\(\sqrt{EF^2}=\sqrt{100}\)

\(\xrightarrow[]{}\)\(\sqrt{EF^2}=\sqrt{10^2}\)

\(\xrightarrow[]{}\)\(EF=10cm\)

Vậy \(:EF=10cm\)

 

Lê Thị Thùy Phương
Xem chi tiết
H
12 tháng 3 2022 lúc 21:45

DE = 5 . 2 = 10 ( vì I là trung điểm DE ,chia đoạn thẳng DE ra làm 2 phần bằng nhau )

Phan Thị Cúc Tâm
Xem chi tiết
Dadouji Tomoyo
1 tháng 4 2020 lúc 22:37

 a ) Trg ba điểm o,e,f điểm e nằn giưã hai điểm còn lại vì : of = oe + ef

b) ta có : of + oe = ef ( điểm e nằn giữa o và f )

=> ef = of - oe

   ef = 8 - 5 = 3 cm

d) vì ef nhỏ hơn de (3cm<4cm) nên ef<de

Khách vãng lai đã xóa