Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Bảo
Xem chi tiết
Lê Nguyên Hạo
6 tháng 8 2016 lúc 6:40

 Do ABCD là hình chữ nhật => CD = AB = 13 cm và BD = AC 
Áp dụng định lí Pi-ta-go vào tam giác vuông DHC có: 
HC^2 = CD^2 - DH^2 = 13^2 - 5^2 = 12^2 => HC = 12 cm 
Áp dụng hệ thức lượng vào tam giác vuông ACD có: 
CD^2 = HC.AC => AC = CD^2/HC = 13^2/12 = 169/12 cm 
Vậy BD = AC = 169/12 cm.

Nguyễn Thị Phương An
Xem chi tiết
Hùng Nguyễn
27 tháng 6 2018 lúc 9:23

A B C D H 13 5 13

Theo đinh lý Pytago trong tam giác HCD có:

\(HC^2+HD^2=CD^2\)

\(\Rightarrow HC=\sqrt{13^2-5^2}=12\)

Lại có: \(CD^2=HC.AC\)

\(\Rightarrow13^2=12.AC\)

\(\Rightarrow AC=\frac{169}{12}\approx14,1\)

\(\Rightarrow BD\approx14,1\)(cm)

Lê Việt Cường
Xem chi tiết
Nguyễn Minh Quang
31 tháng 5 2021 lúc 22:45

A B H C D E

ta có\(AH=\frac{1}{4}AB=3cm\)

 \(\frac{BH}{BA}=\frac{HD}{AC}=\frac{AE}{AC}=\frac{3}{4}\Rightarrow AE=\frac{3}{4}AC=12cm\)

Vậy điện tích AEDH là \(3\times12=36cm^2\)

Khách vãng lai đã xóa
Cần Phải Biết Tên
Xem chi tiết
Nào Ai Biết
15 tháng 7 2018 lúc 13:33

Xét tam giác DHC vuông tại H

\(\Rightarrow HC=\sqrt{DC^2-DH^2}=12\left(cm\right)\)

Xét tam giác ADC vuông tại D đường cao DH

\(\Rightarrow AH=\dfrac{DH^2}{HC}=\dfrac{25}{12}\)

\(\Rightarrow AC=AH+HC=\dfrac{169}{12}\)(cm)

\(\Rightarrow BD=\dfrac{169}{12}\)(cm)

Nguyễn Trần Thanh Thảo
Xem chi tiết
huy tạ
Xem chi tiết
Nguyễn Kim Nam
Xem chi tiết
Lê Việt Cường
31 tháng 5 2021 lúc 21:33
Nam 5a4 đen lắm
Khách vãng lai đã xóa
Hang Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 12:31

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

Lê Thanh Mai
Xem chi tiết