Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB=12cm ;DH=5cm.Tính đọ dài BD
Cho hình chữ nhật ABCD, từ A hạ vuông góc với AC, cắt AC ở H. Biết rằng AB=13cm; DH=5cm. Khi đó BH=..cm (Nhập kết quả dưới dạng phân số tối giản)
Do ABCD là hình chữ nhật => CD = AB = 13 cm và BD = AC
Áp dụng định lí Pi-ta-go vào tam giác vuông DHC có:
HC^2 = CD^2 - DH^2 = 13^2 - 5^2 = 12^2 => HC = 12 cm
Áp dụng hệ thức lượng vào tam giác vuông ACD có:
CD^2 = HC.AC => AC = CD^2/HC = 13^2/12 = 169/12 cm
Vậy BD = AC = 169/12 cm.
cho hình chữ nhật ABCD.Từ D hạ đường vuông góc với AC,cắt AC ở H.Biết rằng AB=13cm,DH=5cm.Tính BD
Theo đinh lý Pytago trong tam giác HCD có:
\(HC^2+HD^2=CD^2\)
\(\Rightarrow HC=\sqrt{13^2-5^2}=12\)
Lại có: \(CD^2=HC.AC\)
\(\Rightarrow13^2=12.AC\)
\(\Rightarrow AC=\frac{169}{12}\approx14,1\)
\(\Rightarrow BD\approx14,1\)(cm)
ta có\(AH=\frac{1}{4}AB=3cm\)
\(\frac{BH}{BA}=\frac{HD}{AC}=\frac{AE}{AC}=\frac{3}{4}\Rightarrow AE=\frac{3}{4}AC=12cm\)
Vậy điện tích AEDH là \(3\times12=36cm^2\)
Cho hình chữ nhật ABCD từ D hạ đường vuông góc với AC, cắt AC ở H biết rằng AB=13cm DH=5cm.Tính độ dài BD
Xét tam giác DHC vuông tại H
\(\Rightarrow HC=\sqrt{DC^2-DH^2}=12\left(cm\right)\)
Xét tam giác ADC vuông tại D đường cao DH
\(\Rightarrow AH=\dfrac{DH^2}{HC}=\dfrac{25}{12}\)
\(\Rightarrow AC=AH+HC=\dfrac{169}{12}\)(cm)
\(\Rightarrow BD=\dfrac{169}{12}\)(cm)
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
cho hinhf chữ nhật ABCD,từ D hạ đường vuoong góc với AC tại H .biết AB=13cm;DH=5cm .khi đó AD=...
Cho tam giác vuông ABC, vuông ở A, biết AB = 12cm; AC= 16cm. Trên AB lấy H sao cho AH = 1/4 AB; từ H kẻ đường thẳng song song với AC, cắt BC tại D. Từ D kẻ đường thẳng song song với AB cắt AC tại E. Vậy diện tích hình chữ nhật AEDH là ...cm2?
SOS
a: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC^2=4^2+3^2=25\)
=>AC=5(cm)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>BH*5=3*4=12
=>BH=2,4(cm)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)
=>\(\widehat{BAC}\simeq37^0\)
b: Xét ΔABE vuông tại A có AH là đường cao
nên \(BH\cdot BE=BA^2\)(1)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có
\(\widehat{HBC}\) chung
Do đó: ΔBHC\(\sim\)ΔBFE
=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)
=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)
Xét ΔBHF và ΔBCE có
BH/BC=BF/BE
\(\widehat{HBF}\) chung
Do đó: ΔBHF\(\sim\)ΔBCE
Trên đường thẳng cho bốn điểm A B C D theo thứ tự đó và AB = CD M là điểm bất kì không nằm trên đường thẳng AB Chứng minh rằng M A + MD lớn hơn MB + MC
Cho hình chữ nhật ABCD vẽ BH vuông góc với AC H thuộc AC M là trung điểm của AK K là trung điểm của CD Chứng minh rằng BM vuông góc vớiMK
Cho tam giác ABC cân tại A từ điểm D thuộc BC vẽ đường thẳng vuông góc với BC cắt các đường AB AC lần lượt tại E F vẽ các hình chữ nhật b g và c d e f h Chứng minh I là trung điểm của g h