cho tứ giác ABCD biết : A ; B: C;D = 1:2:3:4 .Tính các góc của tứ giác
cho tứ giác ABCD biết phân giác của góc A và góc B cuông góc với nhau. CMR tứ giác ABCD là hình thang
Cho tứ giác ABCD. Biết góc A bằng 3 lần góc D, hiệu giữa góc B va góc C la 30. Tính tổng của góc A và góc B (Tứ giác ABCD là tứ giác lồi)
Cho tứ giác ABCD biết A=75 , B=90 , C=120 . Tính số đo các góc ngoài của tứ giác ABCD . ai giúp mình với
Góc ngoài tại đỉnh A có số đo là:
\(180^0-75^0=105^{ }\)
Góc ngoài tại đỉnh B có số đo là:
\(180^0-90^0=90^0\)
Góc ngoài tại đỉnh C có số đo là:
\(180^0-120^0=60^0\)
Góc ngoài tại đỉnh D có số đo là:
\(180^0-75^0=105^{ }\)
Cho tứ giác ABCD, biết : góc B= góc A+ 20; góc C=3A; góc D - góc C= 20độ
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?
giúp mình với
a/ Gọi x là số đo góc A tứ giác ABCD.(x>0)
Số đo góc B là x+20
Số đo góc C là 3x
Số đo góc D là 3x+20
Vì tổng số đo góc trong tứ giác là 360onên ta có phương trình:
x+x+20+3x+3x+20=360
<=>8x = 320
<=> x=40(nhận)
Vậy góc A=40O
GÓC B=60O
GÓC C=120O
GÓC D = 140O
B/ Ta có: góc A + góc D = 40o+140o=180o
Mà 2 góc này ở vị trí trong cùng phía
Nên AB//CD
=> Tứ giác ABCD là hình thang
cho tứ giác ABCD nối A với C trên AC lấy E sao cho CE = 1/3 AC. Nối E với B và D biết diện tích tứ giác ABED là 45 cm2. tính diện tích tứ giác ABCD
Cho tứ giác abcd .tính các góc của tứ giác biết 4 góc bằng nhau
Cho tứ giác abcd .tính độ lớn từng góc trong tứ giác nếu độ lớn góc A góc B góc C góc D lần lượt tỷ lệ với 1;2;4;5
1. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí )
mà 4 góc đó bằng nhau
=> ^A = ^B = ^C = ^D = 3600/4 = 900
2. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí ) (1)
mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5
=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)
Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)
=> ^A = 300
^B = 300.2 = 600
^C = 300.4 = 1200
^D = 300.5 = 1500
Xét tứ giác ABCD có các góc bằng nhau
=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)
\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)
Bài 2:
Xét tứ giác ABCD
=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5
\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)
Do đó
\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)
\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)
\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)
\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)
Vậy.........
a,
1 tứ giác có tổng 4 góc là 360 độ nên 1 góc có :
360 : 4 = 90 độ
b,
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{1+2+4+5}=\frac{360}{12}=30\)
\(\frac{a}{1}=30\Rightarrow a=30\)
\(\frac{b}{2}=30\Rightarrow b=60\)
\(\frac{c}{4}=30\Rightarrow c=120\)
\(\frac{d}{5}=30\Rightarrow d=150\)
lm hộ mk đi please ;(
1. Cho tứ giác ABCD có góc C - góc D = 10o. Các tia phân giác góc A và B cắt nhau tại I. Biết góc AIB = 65o. Tính góc C và D.
2. Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau thành 1 tứ giác. Chứng minh tứ giác đó có tổng 2 góc đối = 180o.
3. Tứ giác ABCD có góc A = góc C = 90o. Chứng minh phân giác góc B và D // với nhau hoặc trùng nhau.
1. cho tứ giác ABCD biết góc A : góc B : góc c ; góc D = 1:2:3:4 tính các góc của tứ giác
2. chó tứ giác ABCD có góc A =105 độ: góc B = 130 độ, góc C-góc D = 25 độ. Tính góc C, góc D
3. Cho tứ giác ABCD có góc A = 57 độ, C= 110 độ, D= 75 độ. Tính góc ngoài tại B
4. Chứng minh rằng: Biết 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi của tứ giác
5. Cho tứ giác ABCD có góc B+gócD= 180 độ, AC là tia phân giác góc A. Chứng minh cạnh CB = cạnh CD
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
Cho tứ giác ABCD, biết: \(\widehat{B}=\widehat{A}+20^o;\widehat{C}=3\widehat{A};\widehat{D}-\widehat{C}=20^o\).
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?