Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khang1029
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
27 tháng 11 2021 lúc 7:53

Đề bài yêu cầu tính gì bạn:)))

Subin
Xem chi tiết
Khang1029
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
27 tháng 11 2021 lúc 8:02

Bạn sửa đề bài hộ mik là"Vẽ hình"<-- thêm chữ vẽ hình vài hộ cái:))))

Khang1029
27 tháng 11 2021 lúc 8:04

có trả lời không thế

Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 8:06

Minh Phương
Xem chi tiết
Irene
7 tháng 3 2019 lúc 21:23

là AD nhé bn

trương ngọc ánh
Xem chi tiết
Khang1029
Xem chi tiết
Unirverse Sky
27 tháng 11 2021 lúc 7:51

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  ΔOAB,ΔOACΔOAB,ΔOAC có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét ΔBHMΔBHMvà   ΔCKMΔCKM  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

Khách vãng lai đã xóa
Nguyển Thủy Tiên
Xem chi tiết
thắng
9 tháng 5 2020 lúc 20:01

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  \(\Delta OAB,\Delta OAC\) có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét \(\Delta BHM\)và   \(\Delta CKM\)  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

k mk nha thack ae

Khách vãng lai đã xóa
𝐓𝐡𝐮𝐮 𝐓𝐡𝐮𝐲𝐲
9 tháng 5 2020 lúc 20:18

Bài 1  : 

a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tam giác  ABC cân tại A
mà AH là đường cao của tam giác ABC
=> AH là đg trung trực của tam giác ABC
=> BH = CH
=> BH = CH = \(\frac{1}{2}\)BC
Lại do BC = CE
=> CH = \(\frac{1}{2}\) CE
hay CE = \(\frac{2}{3}\) EH (2)
Từ (1); (2) => C là trọng tâm của tam giác ADE.

b) Có : AH là đường cao của ΔABC
⇒ Góc AHC = 90
⇒ Góc DHC = 90 (kề bù)
Xét ΔAHE và ΔDHE có:
+ AH = DH (gt)
+ Góc AHE = góc DHE = 90
+ HE chung
⇒ ΔAHE = ΔDHE
⇒ Góc EAH = góc EDH (1)
Lại có: Tia AC cắt DE tại M
Mà C là trong tâm của ΔADE
⇒ AM là trung tuyến của ΔADE
⇒ M là trung điểm của DE
Mà ΔDHE là tam giác vuông tại H (do DHE = 90 )
⇒ HM là đường trung tuyến của cạnh huyền
⇒ HM = DM = EM
⇒ ΔHMD cân tại M
⇒ Góc MHD = góc MDH (2)
Từ (1) + (2) ⇒ Góc EAH = góc MHD
Mà hai góc này là hai góc đồng vị
⇒ AE // HM (đpcm)

Khách vãng lai đã xóa
𝐓𝐡𝐮𝐮 𝐓𝐡𝐮𝐲𝐲
9 tháng 5 2020 lúc 20:26

Bài 2 :

a, Có Diện tích tam giác AOB= Diện tích tam giác AOC ( gt)
\(\Rightarrow\) BH=CK ( 2 đường cao tương ứng )
b, Gọi M là gia o điểm của AK và BC
Diện tích tam giác AOB = Diện tích tam giác AOC ( gt)
\(\Rightarrow\) MH=KM ( 2 đấy tương ứng)
Xét ΔBHM và ΔCKM có:
BH=CK (cmt)
\(​​\Rightarrow \widehat{BHM}=\widehat{CKM}\) \(=90^2\)( gt)
MH=KM ( cmt)
\(\Rightarrow\) ΔBHM = ΔCKM ( c.g.c)
\(\Rightarrow\) BM=CM ( t-ứng)
\(\Rightarrow\) OM là trung tuyến của ΔABCΔABC
Chứng minh tương tự có OE là trung tuyến của ΔABCΔABC
\(\Rightarrow\) O là trọng tâm của ΔABC ( đpcm)

Khách vãng lai đã xóa
Phan Việt Đức
Xem chi tiết
Lê Nam Đông
Xem chi tiết
Đào Anh Phương
2 tháng 4 2021 lúc 0:09

A B C O D F E

+ O trung điểm AD => AO = OD

+ O trung điểm BE => BO = BE

+ O trung điểm CF => OC = OF

+ Xét ∆FOE và ∆COB có:

OF = OC (cmt)

góc FOE = góc BOC (đđ)      => ∆FOE = ∆COB (c-g-c) => FE = BC (2 cạnh tương ứng)

OE = OB (cmt)                      

Chứng minh tương tự với ∆FOD và ∆COA với ∆BOA và ∆EOD

=> có AB = ED và AC = FD

+ Xét ∆ ABC và ∆ DEF có:

FE = BC (cmt)

AB = ED (cmt)    => ∆ ABC = ∆ DEF (c-c-c) (đpcm)

AC = FD (cmt)

Khách vãng lai đã xóa