Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trang
Xem chi tiết
LUFFY
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 4 2018 lúc 1:52

Xét phép quay tâm A góc quay  60 o  biến D thành B và biến C thành E, suy ra phép quay đó biến đường thẳng DC thành đường thẳng BE suy ra góc giữa DC và BE bằng góc quay  60 o .

Chọn đáp án B.

Xem chi tiết
Trần Thu Phương
14 tháng 3 2018 lúc 20:16

a ) Xét góc DAC  và góc EAB có

góc ADC = 90 độ + góc ABC (gt) (1)

góc ABE = 90 độ +góc BAC   (2) 

từ (1) và (2)  =>   góc DAC = góc EAB

Xét tam giác DAC và  tam giác EAB có 

AD =AB ( vì tam giác ABD vuông cân )

góc DAC = góc BAE

AC =AE 

=> tam giác DAC = tam giác EAB ( cạnh - góc - cạnh )

=>  DC=EB ( cặp cạnh tương ứng )

+>  chứng minh BE vuông góc với CD 

Gọi O là giao điểm của DC và BE 

Vì góc O1 = O2 ( đối đỉnh )

góc C1 = E1  ( vì tam giác DAC = tam giác EAB ( cmt )

=> góc O = A1 = 90 độ

=>  CD vuông góc với BE ( điều phải chứng minh )

Trần Thu Phương
14 tháng 3 2018 lúc 20:20

A B C D E O 1 2

๖Fly༉Donutღღ
14 tháng 3 2018 lúc 20:23

a) Xét tam giác DAC và tam giác BAE có:

AB = AD ( tam giác ABD vuông cân tại A )

AC = AE ( tam giác ACE vuông cân tại A )

\(\widehat{DAC}=\widehat{BAE}\)

\(\Rightarrow\Delta DAC=\Delta BAE\left(c-g-c\right)\)

\(\Rightarrow DE=BC\)( hai cạnh tương wungs bằng nhau )  ( 1 )

Ta có: M là trung điểm của BC ; N là trung điểm của BD và P là trung điểm của CE 

Suy ra PN là đường trung bình của tam giác BEC \(\Rightarrow PN=\frac{EB}{2}\left(2\right)\)và PN // EB

Suy ra PM là đường trung bình của tam giác BCD \(\Rightarrow PM=\frac{DC}{2}\left(3\right)\)và PM // DC

Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra PN = PM ( 4 )

\(\widehat{M_1}\)là góc ngoài tại đỉnh M của tam giác EMC nên \(\widehat{M_1}=\widehat{E_1}+\widehat{MCE}=\widehat{E_1}+\widehat{C_1}+\widehat{C_2}\)

Mà \(\widehat{C_2}=\widehat{E_2}\)( Vì tam giác DAC = tam giác BAE cmt )

\(\Rightarrow\widehat{M_1}=\widehat{E_1}+\widehat{C_1}+\widehat{E_2}=\widehat{AEC}+\widehat{C_1}=90^0\)( Tam giác AEC vuông cân tại A )

\(\Rightarrow CD\perp BE\left(đpcm\right)\)

b) Vì \(CD\perp BE\)( Đã chứng minh ở câu a )

Ta có \(BE//PN\Rightarrow PN\perp DC\)

Mà \(PM//DC\Rightarrow PN\perp PM\Rightarrow\widehat{MPN}=90^0\left(5\right)\)

Từ ( 4 ) và ( 5 ) suy ra MNP vuông cân tại P ( đpcm )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2018 lúc 16:25

Đáp án B

Xét phép quay tâm A góc quay 60 °  biến D thành B và biến C thành E, suy ra phép quay đó biến đường thẳng CD thành đường thẳng BE suy ra góc giữa BE và CD bằng góc quay  60 °

Hoàng Anh
Xem chi tiết
Đoàn Lê Na
Xem chi tiết
Đoàn Lê Na
23 tháng 1 2019 lúc 6:20

Giúp mình với ạ!

vudouckhai
Xem chi tiết
vudouckhai
Xem chi tiết